

Application of the JED-SAD model from X-ray Binaries to AGN

Samuel Barnier

Institut de Planétologie et d'Astrophysique de Grenoble

31/03/2022

Collaborators: **P.-O. Petrucci, J. Ferreira, G. Marcel,** R. Belmont, M. Clavel, S. Corbel, M. Coriat, G. Henri, J. Malzac

Astrophysical context

X-ray Binaries :

Spectral evolution

Astrophysical context

X-ray Binaries :

Spectral evolution

Astrophysical context

Jet Emitting Disc / Standard Accretion Disc

- Radial stratification of magnetization validated by MHD simulations:
 - Scepi et al. 2020
 - Liska et al. 2020
 - Jacquemin-Ide et al. 2021

Standard Accretion Disc

- From (Shakura & Sunyaev, 1973)
- Optically thick
- Geometrically thin
- Cold ~1 keV

Jet Emitting Disk

- Self similar MHD solutions (Ferreira 1997)
- Supersonic accretion speed

Standard Accretion Disc

- From (Shakura & Sunyaev, 1973)
- Optically thick
- Geometrically thin
- Cold ~1 keV

Jet Emitting Disk

- Self similar MHD solutions (Ferreira 1997)
- Supersonic accretion speed
- Optically thin
- Hot

Even at high \dot{m}

Standard Accretion Disc

- From (Shakura & Sunyaev, 1973)
- Optically thick
- Geometrically thin
- Cold ~1 keV

Jet Emitting Disc / Standard Accretion Disc

- *M*: Mass of the Black Hole
- o r_{ISCO}

- $\dot{m}(t)$: mass accretion rate
- $r_J(t)$: transition radius

- *M*: Mass of the Black Hole
- o r_{ISCO}

- $\dot{m}(t)$: mass accretion rate
- $r_J(t)$: transition radius

Model SED

GX339-4 – First fits

 $r_J(R_G) \sim 14.3 \pm 0.6$ $\dot{m}(\dot{M}_{Edd}) \sim 2.31 \pm 0.02$

10

Adapted from Barnier et al. 2021

Methodology

Methodology

• X-ray spectrum :

 Constrains physical parameter

$$(r_J; \dot{m})$$

Methodology

• X-ray spectrum :

- Constrains physical parameter $(r_I; \dot{m})$
- Reproduce Radio with :

 $F_R \propto \dot{m}^{\beta} r_J^{\alpha}$

 $F_R \propto \dot{m}^{\beta} r_I^{\alpha}$

GX339-4 – BP vs BZ ?

GX339-4 – BP vs BZ ?

Bright soft state

No JED \Rightarrow no jets

GX339-4 – BP vs BZ ?

Bright soft state

AGN : Sample

Lusso et al. 2020
 Bright luminous quasar ; radio quiet

Liu et al. 2021
47 AGN ; lower luminosities

Zhu et al. 2020
Radio loud sources

AGN : r_J ; \dot{m} grid

AGN : r_J ; \dot{m} grid

AGN : r_J ; \dot{m} grid

AGN : statistical approach

AGN : statistical approach

AGN : Do we reproduce the correct Xray spectra ?

Selection of 500 simulated spectra

Lusso et al. 2020 Data

AGN : Do we reproduce the correct Xray spectra ?

Lusso et al. 2020 Data

What is next? \circ Drawing simulated sample respecting the Mass and Γ distributions in the UV – Xray plane. O Physical explanation for the non linear correlation ? O How does an XrB outburst transposes for AGNs ? O What about the fundamental plane of black hole activity ? • Spectral applications Can we understand the AGN population with the JED-SAD model?

Conclusions

- JED-SAD model simultaneously explains the X-ray spectral and jet dynamical evolution
 - JED is characterized by supersonic accretion speed

Conclusions

- JED-SAD model simultaneously explains the X-ray spectral and jet dynamical evolution
 - JED is characterized by **supersonic accretion speed**
- Successful spectral applications to GX339-4 and MAXI J 1820
- Simultaneous radio / X-ray fit of GX339-4 :
 - Two different radio behavior are observed between the rising and decaying phases
 - Different ejections processes ?

Conclusions

- JED-SAD model simultaneously explains the X-ray spectral and jet dynamical evolution
 - JED is characterized by **supersonic accretion speed**
- Successful spectral applications to GX339-4 and MAXI J 1820
- Simultaneous radio / X-ray fit of GX339-4 :
 - Two different radio behavior are observed between the rising and decaying phases
 - Different ejections processes ?
- JED-SAD covers the entire UV-Xray correlation
 - Reproduction of AGN sample (WIP)