The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states

Barbara De Marco

Ramón y Cajal fellow Universitat Politècnica de Catalunya

In collaboration with: A. Zdziarski, G. Ponti, G. Migliori, T. M. Belloni, A. Segovia Otero, M. A. Dziełak, E. V. Lai

Open questions:

Is the accretion disc truncated in the hard state of BHXRBs? How does the inner accretion flow evolve at transition? When does the disc settles at the ISCO?

A X-ray spectral-timing analysis of MAXI J1820+070 with NICER

Disc geometry during an outburst

Truncated disc+inefficient inner flow

Observations of optical disc lines show truncated disc [e.g. Bernardini+'16]

Disc geometry during an outburst

The Neutron star Interior Composition Explorer (NICER)

2022 Bruno Rossi Prize

Winner

Large collecting area, fast timing capabilities, no limitations to observe very bright source

[Gendreau+'16]

One of the brightest X-ray binaries ever observed

Simultaneous multiwavelength observations of hard-soft transition

Evolution of geometry in MAXI J1820+070 through hard and intermediate states

Hard X-ray lags

Hard X-ray lags

Variability propagates through a spectrally stratified medium [see also Dziełak, BDM+'21]

Soft X-ray lags (reverberation)

X-ray lags at transition

[*De Marco*+'21]

"Reltrans" spectral-timing model (Ingram+'19; Mastroserio+'19,'20)

Steady decrease of relative distance between the hard X-ray source and the disc

Steady decrease of relative distance between the hard X-ray source and the disc

the disc

~4 days before jet ejections

Longer reverberation lags at transition:

dissipation of hard X-rays occurring in a larger or more distant region associated with the jet

[see also Wang+'21]

When does the disc reach ISCO?

[see also Wang+'21]

Spectrum of linearly correlated variable components (covariance spectra)

[*De Marco+'21*]

Spectrum of linearly correlated variable components (covariance spectra)

Spectrum of linearly correlated variable components (covariance spectra)

The temperature of the disc region where reprocessing occurs steadily increases (no break at transition!)

[*De Marco+'21*]

$$\frac{R_{\rm in}}{R_{\rm g}} \gtrsim 10 \frac{\mathcal{R}^{1/2} (1-a)^{1/2} l_{\rm irr}^{1/2}}{(kT_{\rm eff}/1 \text{ keV})^2 (M/10M_{\odot})^{1/2}}$$

[Zdziarski & De Marco+'20]

Summary of results

[*De Marco+'21*]

Summary of results

[*De Marco+'21*]

Outburst starts with long reverberation lags, cold truncated disc

Increasingly shorter reverberation lags, increasingly hotter and less truncated disc (Rev lag and kT_{in,covar} follow the same trend)

Inner radius moving inwards Hard X-rays dissipated close to the BH

Summary of results

Very hot disc, Small/no truncation

BUT

Very long reverberation lags, No continuum hard lags, Relativistic ejections (Rev lag and kT_{in,covar}

stop following the same trend)

[*De Marco+'21*]

Inner radius reaching (close to) ISCO of a non-spinning BH Hard X-rays dissipated in the jet

> Outburst starts with long reverberation lags, cold truncated disc

Increasingly shorter reverberation lags, increasingly hotter and less truncated disc (Rev lag and kT_{in,covar} follow the same trend)

Inner radius moving inwards Hard X-rays dissipated close to the BH

Thank you!