

Qingcui Bu On behalf of Insight-HXMT collaboration team

The 10th FERO meeting, 03/30-04/01, 2022, Toulouse, France

Overview to the *Insight*-Hard X-ray Modulation Telescope (HXMT)

Detectors

Science Payload

High Energy Telescope (HE) 20-250 keV for pointing; 0.2-3 MeV for Gamma-ray monitoring; Geometrical area of ~5100 cm^2

Medium Energy Telescope (ME)
5-30 keV for pointing; Geometrical area of ~ 952
Table Am The main characteristics of the Insight-HXMT payloads

Energy range (keV)

PI: Shuangnan Zhang

Time resolution

Core Science

➢ To observe X-ray binaries in broad energy band and study the dynamics and emission mechanism in strong gravitational or magnetic fields;

- Large Area (5000 cm²)
- High time resolution (25us)
- Wide energy band :
 - Hard X-ray Energy (~250 keV)
 - Low Energy (~1keV)
- No PileUp

HE

Total Exposure Map (06/2017 -- 09/2021)

Summary of the Observations (07/2017 -- 09/2021)

Obs. Mode	Source Type	No. of sources	No. of the Obs.	Exp. Time (ks)
Pointing (> 60 Ms)	SNR	2	48	3700
	Isolate pulsar	4	157	4240
	Black hole XRB	15	948	16070
	neutron star XRB	47	1133	24210
	extragalactic objects	19	123	1680
	blank sky	21	442	4570
	others	18	153	4640
Small Sky Survey (>20 Ms)	Crab	1	96	2300
	Vela	1	3	70
	Cygnus	1	2	50
	Galactic Plane	89	2489	14760

> 20%

Hardness(3.0-10.0/1.0-3.0)

HXMT observations of bright BH X-ray binaries

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

MAXI J1535-571

Scientific highlights from HXMT

MAXI J1820+070 MAXI J1348-630

MAXI J1348-630

UV

UNIVERSITAT TUBINGEN

4th polynomial fit for the peak fluxes

 au_{fit}

Weng et al. 2021, ApJL

Cross-correlations of the lightcurves

Soft X-ray lags the hard Xray/UV for ~10 days

MAXI J1348-630

Weng et al. 2021, ApJL

The "truth" of the HID is the "time lag" between radiations of the accretion disk and the corona.

MAXI J1820+070

Challenging the current LFQPO models!!

1, Soft lags instead of hard lags 2, A light-travel time lag of ~1 s corresponds to a size of ~10^4 Rg for a 10 solar mass BH 3, QPO frequency is constant at different energies.

Ma, ..., Bu, et al. 2021, Nature Astronomy

LT precession of small-scale jet

MAXI J1820+070

Hard state

You, ..., Bu, et al. 2021, Nature Communications

Model: tbabs*(diskbb + relxillCp + xillverCp) *constant

relxilllpionCp

In the rise phase, increasing fraction of photons that illuminate the disk; In the decay phase, decreasing fraction of photons illuminate the.

You, ..., Bu, et al. 2021, Nature Communications

Jet-like corona

The system is characterized by two parameters: corona position and bulk velocity

Application of jet-precession model in MAXI J1631-479

Bu et al. 2021, ApJ

MAXI J1820+070

Yang, Zhang, Bu, et al. 2022, ApJ

Broadband variability behaviors in 1-150 keV

High-energy noise (> 30 keV) is more variable on shorter timescales!!

Yang, Zhang, Bu, et al. 2022, ApJ

harder photons from more inner region have larger lags

Yang, Zhang, Bu, et al. 2022, ApJ

MAXI J1348-630

Fast transition between Type-C and -B QPOs in ~10 s

Liu, Huang, Bu, et al. 2022, submitted

From C to B, soft emission increases, while hard emission decreases

Liu, Huang, Bu, et al. 2022, submitted

Fast recurrence of type-B QPOs

From B to no-B, soft X-ray flux decreases, while spectral index remains the same

Could both type-C and -B QPOs be generated by the LT precession of the jet?

http://hxmten.ihep.ac.cn/

Summary

 Small-scale jet precession model is a promising model in explaining the high energy (> 30 keV) timing properties of type B/C QPOs
Observed time-lag between radiations of the accretion disk and the corona leads naturally to the hysteresis effect and the "q"-diagram
HXMT has great advantages in the broadband variability study
Everything we are not clear yet, we are counting on eXTP

Thanks!