

An X-ray View of the GC

Andrea Goldwurm APC - Paris, DAp/IRFU/CEA - Saclay

An X-ray View of the GC – Fero10, Toulouse 1/4/22

An X-Ray view of the Galactic Center

Topics:

- Introduction to Galactic Center and CMZ
- Overview of the 2000-2012 XMM survey of CMZ
- Sgr A* in X-rays: persistent and flaring emission
- Diffuse CMZ NT component: Echoes of Sgr A* (recent) past outbursts
- Diffuse CMZ Thermal Hard component
- Point source population, cusp of (transients) XRBs
- Soft X-rays from hot gaz, bubbles and chimneys: traces of more ancient Sgr A* AGN-like activity ?
- Summary and perspectives

ESO

Galactic Bulge in Visible Light

Infrared View of the Galactic Center

Spitzer/ IRAC 3.6 - 8 µm

Scale: $1.9^{\circ} \times 1.4^{\circ} \approx 274 \text{ pc} \times 202 \text{ pc}$ (at 8 kpc)

S-Cluster Star Orbits around a SMBH

At the GC distance of ~ 8 kpc Enclosed Mass M_{enc} = 4 10⁶ M_{\odot} within a radius of 124 AU (1500 R_s)

=> A (Super) Massive Black Hole

$$\begin{array}{rl} \mathsf{M}_{\bullet} &= 4 \; 10^6 \; \mathsf{M}_{\odot} \\ \mathsf{R}_{\mathsf{S}} &= 1.2 \; 10^{12} \; \mathsf{cm} = 0,08 \; \mathsf{AU} \\ &\cong 10 \; \mu \mathsf{as} \; (\mathsf{at} \; 8 \; \mathsf{kpc}) \\ \mathsf{L}_{\mathsf{E}} &= 5 \; 10^{44} \; \mathsf{erg/s} \end{array}$$

Central Molecular Zone in Radio

Central Molecular Zone in Radio

SARAO, Heywood et al. (2022) / J. C. Muñoz-Mateos

Central Molecular Zone in Radio

MEERKAT

Sagittarius A* (discovered 1974) electromagnetic counterpart of the Galaxy MBH

- Sgr A*: bright (1 Jy), variable, compact, synchrotron radio-s
- Flat power-law spectrum with high and low freq cut-offs, $L_R \approx 1.2 \ 10^{36} \text{ erg s}^{-1}$, Sub-mm excess (> 100 GHz) linearly polar.
- Size $\approx 0.1 \text{ mas} < 1 \text{ AU}$ $\approx 15 \text{ R}_{\text{S}} (\text{M}=3 \ 10^6 \text{ M}_{\odot})$
- Low **proper motion** < 20km/s ⇒M>1000 M_☉
- Coincide (< 10 mas) with star cluster dynamical center

GC X-Ray Observations

- X-ray Observatories used in the surveys of the Central Molecular Zone+ in 1999 – 2018
- Energy bands: 0.1 keV 3 MeV Angular Res : 1" – 12'
- Also: Suzaku (1-10 keV), Nu-STAR (3-80 keV)

Total Exposure of GC 2000-2012 XMM Obs.

A. Goldwurm

An X-ray View of the GC – Fero10, Toulouse 1/4/22

GC XMM-Newton Surveys

Exposure Map (s) in galactic coordinates from 2000-2012 XMM Observations of GC CMZ (3.2° x 1° = 461 pc x 144 pc) - point sources subtracted

XMM 2000-2012 data including 2
large programs of CMZ survey:
101 obs. with total exp. > 2 Ms
Terrier et al. 2018

Energy Bands of GC CMZ XMM Maps

Ponti et al. 2015

12 yr XMM Galactic Center Survey

XMM CMZ Survey

XMM CMZ Survey

Central Molecular Zone XMM X-ray Survey and Catalog of Diffuse Sources

(Ponti et al. 2015)

Chandra GC X-ray Scan (Muno+ Wang+ ...)

X-RAY SURVEYS OF THE CMZ ($2^{\circ}x 1^{\circ} \sim 300 \text{ pc} \times 150 \text{ pc}$):

- X-Ray images of GC dominated by XRBs (some bright μQSO or transients)
- Many point (X-RB, CVs) and diffuse sources (SNR, PWN, NT filaments)
- 3 diffuse components: Soft Thermal, Hot Thermal, Non-Thermal+Fe-I Klpha 6.4 keV line
- SMBH Sgr A* weak persistent emission, dayly flaring activity

Chandra resolves the central pc in X-rays (2000)

Diffuse Emission, several weak point sources, one compatible with Weak persistent emission of Sgr A*: $L_{\chi}(2-10 \text{ keV}) \approx 2 \ 10^{33} \text{ erg s}^{-1}$ Soft power law spectrum ($\alpha \approx -2.7$), partly extended ($\approx 1''$), not variable

(Baganoff et al. 2003)

Chandra: Sgr A* X-ray persistent emission

- Sgr A*: EM counterpart of the BH revealed in the GC by S-star cluster orbits measured in NIR
- SMBH M = 4 10⁶ M_{\odot}, R_s = 1.2 10¹² cm ~ 0.1 AU, L_E = 7 10⁴⁴ erg/s
- X-ray Chandra Detection: L_x=2 10³³ erg/s), soft spectrum, extended (~1")
- Sgr A* Total L ~ 10³⁶ erg/s (radio) <<
 L_E: Very low mass accretion rate
- Sub-mm polarization => \dot{M} ~10⁻⁸ M_{\odot}/yr << stellar winds \dot{M} ~10^{-6/-5} M_{\odot}/yr
- Prototype of very low accretion BH:
 Sgr A* L << L of LLAGN (~ 10³⁹⁻⁴² erg/s)
- Test bed for ADAF/RIAF models of BH accretion flow: at Bondi ($R_B=10^5 R_s$) $n_e^{\sim} 10^2 \text{ cm}^{-3}$, T \sim 7 10^7 K° ; at $\sim 10 R_s$ $n_e^{\sim} 10^{6-7} \text{ T} \sim 10^{11} \text{ K}^\circ$, B $\sim 10-50 \text{ G}$

Baganoff+03, Quataert02, Genzel+10, Yuan&Narayan14, Wang+13

Radiatively Inefficent Accretion Flow in Sgr A*

An X-ray View of the GC – Fero10, Toulouse 1/4/22

XMM detections of Sgr A* flares in 2001 (Goldwurm+03) and in 2002 (Porquet+03). Since many studies ...

2007 Obs. XMM EPIC-PN, 0.2-12 keV (Trap+2009)

Sgr A* X – NIR Flares

- X-ray Flares: peak L_x < 200 x Q.L.~ 4 10³⁵erg/s soft X-ray spectra: ph.i. ~ -2.2/-2.7 (α~-1.2/-1.7)
- NIR flares: Blue/hard spectra ($\alpha^{-0.5}$, for $F_v \div v^{\alpha}$), linearly polar. => Opt. thin Synchrotron
- Frequency: X-rays ~ 1/d, NIR ~ 4/d
- Durations: 20 min 3 hr (NIR usually longer)
- Variations <200 s => small emission region < 10 R_s
- Constraints on mechanism from 2007 flare M-w obs: X-ray sp. + NIR flux + MIR upper limit favor Synch IR to X, but no simultaneous X-NIR spectra

(Dodds-Eden+ 2009, Trap+ 2011)

Sgr A* X – NIR Flares

- Durations: 20 min 3 hr (NIR usually longer)
- Variations <200 s => small emission region < 10 R_s
- Constraints on mechanism from 2007 flare M-w obs: X-ray sp. + NIR flux + MIR upper limit favor Synch IR to X, but no simultaneous X-NIR spectra

(Dodds-Eden+ 2009, Trap+ 2011)

Multi-Wave Obs of bright 2014 Aug Sgr A* Flare

- 1st simultaneous measurement of spectra in X & NIR of Sgr A* very bright flare
- VLT/Sinfoni (2.03-2.39 μm) Image compared to a simulated image
- Light Curves in X and NIR show temporal behavior of the flare

(Ponti et al. 2017)

Fits of average Sgr A* 2014 Flare spectra

VB3 mean spectrum				
	Single PL	BPL	TSSC	PLCool
Γ_{NIR}	2.001 ± 0.005	1.7 ± 0.1		1.74 ± 0.08
Γ_X		2.27 ± 0.12		
$\Delta\Gamma$		0.57 ± 0.15		0.5
Log(B)		0.94 ± 0.16	4.0 ± 0.4	0.94 ± 0.16
Θ_e			9 ± 4	
$Log(N_e)$			39.5 ± 0.5	
$Log(R_F)$			-3.5 ± 0.5	
χ^2/dof	189.7/142	154.9/140	162.7/139	156.8/141

- Single PL not consistent, Broken PL much better ($\Delta\Gamma \sim 0.5$)
- Thermal SyncSelfComp fit ok but unreasonable physical parameters

 $(B^{-10^4} \text{ G}, \text{ n}_e^{-10^{23}} \text{ cm}^{-3}, \text{ R}_F^{-10^{-3}} \text{ R}_S)$

 PL + radiative Cooling best-fit: Synchrotron mechanism with cooling break in V-UV

(B ~ 9 G, p~2.5, $\gamma_{max} > 10^6$)

- Confirms results on 2007 NIR/X Flare based on MIR upper limit (Dodds-Eden et al. 2009): Synchrotron with cooling break and $\gamma_{\rm max}$ favored
- However a constant γ_{max} (and E_{br}) not compatible with data evolution

Results on the very bright Sgr A* 2014 Flare

- Successful 2014 campaign on a Bright Flare (XMM VLT/Sinfoni NuSTAR): First ever simultaneous NIR/X-hardX spectral measure
- Confirm previous findings (2007 flare by Dodds+2009, Trap+2009)
 - Steep X-ray PL (no hard/soft flares). Same peak in IR & X but NIR different duration
 - Confirm Synchrotron Emission with cooling break and max energy for Xrays (exclude IC models)
- NIR spectral changes (steepening at low F), detection of X-ray evolution (slope, FWHM)
- Modelling the results using variable E_{br} and also a variable γ_{max} on long timescales (100 min–100 s) which implies "slow" acceleration process
- Slow acceleration (γ_{max} evolution) naturally explains different NIR/X Light Curves
- If t_{esc} constant => change in cooling break due to B decrease during flare peak and rise again at the end.
- Possibly Magnetically driven flare (e.g. reconnection).

Recent Multi-w campaign on Sgr A* Flares

2019 - VLTI-Gravity Spitzer Chandra NuSTAR Time-resolved spectral analysis of a Sgr A* bright NIR and moderate X-ray flare

- Confirm IR spectral variability correlated to flux
- Reject SYN (IR) SSC (X) Model (and any Ext IC model)
- Fitted by SYN(IR)–SYN(X) + cooling + HE Exp. Cutoff: γ_{max} > 50000 R_{source}~ 1 R_s
- Compatible also with syn(submm) SSC(IR) SSC(X): γ_{max} =500, $n_e > 10^{10}$ cm⁻³

Recent Multi-w campaign on Sgr A* Flares - 2

- The syn(submm) SSC(IR) SSC(X) Model also fits data with $\gamma_{max} \sim 500$ and reasonable magnetic field but requires very high density ($n_e >>$ ambient n_e)
- It predicts correlated variability in the sub-mm range which could not be observed (planned SMA Obs not performed)
- It requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event.
- In both models temporal evolution is regulated through γ_{max} implying that sustained particle acceleration is required to explain at least part of evolution

Gravity coll 2021, see also Witzel+ 2021

Neutral Fe fluorescence line – Molecular Clouds

- Radio (mol. lines of CO, CS, SiO, H₂CN, HC₃N), sub-mm and FIR (dust)
- Central 450 pc x 50 pc contains $\approx 10^8 M_{\odot}$ molecular gas $\approx 10\%$ of all Galaxy m.g. content
- Dense ($\approx 10^4 10^5 \text{ cm}^{-3}$), compact (50-70 pc), cool (T $\approx 30-60 \text{ K}^{\circ}$) clouds
- Star formation 0.3 0.6 M_{\odot} yr⁻¹ (low when compared to Galactic Disk ~ 5.5)
- Giant Molecular Clouds: Sgr B, Sgr A complex, Sgr C, G 01-01, Sgr D, Sgr E

Traces of Sgr A* activity from MC H-E emission

- The SMBH Sgr A* seats at the center of the so called Central Molecular Zone (CMZ) the complex region of the inner 400 pc of the galaxy, dominated by most massive and dense molecular clouds of the MW. Sgr B2, Sgr A, Sgr C, G01-01 and other MCs emit molecular radio lines and FIR from associated dust.
- Traces of past intense activity in the GC region could be seen in the dense cold molecular clouds of the GC region that can act as mirrors reflecting the X-ray radiation that illuminates them.
- This reflected radiation will reach us with a delay with respect to the primary. This light echo carries specific spectral (6.4 keV line + compton hump) & timing features (delay depending on MC distance, MCs illuminated by same event lay on a parabola) => past activity of illuminating source.
- Since discovery of diffuse 6.4 keV from SgrB2 MC by ASCA ('94) many works presented obs. (Chandra, Suzaku, XMM, Integral) and theory of this process proposing Sgr A* as illuminating source with peak Luminosity of 10³⁹ erg/s in the past 300 yr (Koyama+ 96, Sunyaev&Churazov 98, Koyama+ 06 ...)
- Detection of variability excluded the alternative LECR scenario (Inoui+07, Terrier+10, Ponti+10, Clavel+13)

Fluorescent Iron line and reflected continuum from X-ray irradiation

Geometry of Light-Echoes

Primary emission Reflected light

Points of equal time delay Δt seen by an observer at infinity lie on an parabolic surface with focus on the illuminating source

$$z(x) = \frac{1}{2} \left(\frac{-x^2}{c\Delta t} + c\Delta t \right)$$

Sgr A* Light-Echo Propagation in CMZ

Propagation seen from above the Galactic plane

A. Goldwurm

Simulation of reflection from a putative distribution of molecular clouds in the CMZ of a short (1 yr) X-ray outburst from Sgr A* at different delays (< 1000 yr) Complicated pattern of morphological changes related to the matter distribution

M. Clavel (PhD Thesis, 2014)

Variability of the 6.4 keV line in the CMZ

VLA (20cm) and INTEGRAL (20-30 keV, contours)

Belanger et al. 2006

- INTEGRAL (20-200 keV) Sgr B2 spectrum compared to ASCA & ART-P data at low energy
- Broadband spectrum: Fe I fluorescence + Compton scattering of a 10³⁹ erg/s luminosity outburst of Sgr A* ~300 yr back lasted > 10 yr (Revnivtsev et al 2004)
- However hypothesis of particle induced nonthermal emission not completely excluded

INTEGRAL GC survey: Discovery of gamma-ray variability of Sgr B2

- Decrease of Sgr B2 20 60 keV flux over 7 ys (cloud core size ~ 8 ly)
- Variation up to 40 %, compatible with the 6.4 keV decrease observed by Suzaku (compared to XMM)
- Consistent with hypothesis of reflection of hard X-ray emission: end of outburst => decrease
- Not with particle interpretation (Terrier et al. 2010)

XMM monitoring of 6.4 keV line from MC around Sgr A*: discovery of superluminal motion

XMM Surveys of Molecular Complex near Sgr A

15-17 45-17 45-17 15-46 17-17

Chandra CMZ Obs.: multiple Echo events

Chandra Survey 1999–2011: 6.4 keV Iron K line rapid variability from Sgr A molecular clouds. **MC1 MC2 not constant**, **Br1 rapid event => exclude 300 yr long flare**, rather 2 bright events (10³⁹ erg/s), 1 short (< 2 yr) + 1 longer (~ 10 yr) from Sgr A* in past few 100 yrs. **Not possible to determine the delays because unknown location of clouds**. **Need for spectral modelling**. (Clavel et al. 2013, Clavel PhD 2014)

Monte Carlo Modeling of Reflection Spectrum

Reflection Spectrum as a function of scattering angle

- Strong dependence of low energy spectum on Scattering angle $\boldsymbol{\theta}$
- Determination of θ allows the location of the reflecting clump line-of-sight position
- Applied first to Sgr B (XXM + Chandra + INTEGRAL) (Walls+ 2016)
- Then to Sgr C (Chuard+ 2018)
- Improved code of simulation and simultaneous fit of several MC clumps (XMM) data confirm with increased accuracy the previous estimations.

D. Chuard, PhD 2018

Fitting Reflection spectra of several MCs

Two-events ($L_X \sim 10^{39}$ erg/s) model is significant at > 5 σ c. l.

Delays of 2 events derived from several MCs data fit : $\Delta t1 = 84 + 16/-9 \text{ yr}$ Short Event (1-2 yr) $\Delta t2 = 238 + 19/-20 \text{ yr}$ Long Event (~ 20 yr)

=> Estimation-of / constraint-on the line of sight location of the reflecting MC

Chuard PhD Nov 2018, Chuard et al. 2019/20 conf. Proc. Chuard+ in prep.

Sgr A* and the Low-Luminosity AGN

Ho 2008

43% of brightest Galaxies

(Chuard PhD Nov 2018)

Sgr A* and the Low-Luminosity AGN

Ho 2008

43% of brightest Galaxies

(Chuard PhD Nov 2018)

Recent SRG/eROSITA results on Sgr A* echos

- Sgr A complex still bright at ~ 4 10⁻¹³ erg/s/cm²/arcmin²
- Morphological changes clearly visible when compared to earlier Chandra XMM
- Upper limits for other molecular complexes
- Some MC clumps dominated by multiply scattered radiation
- No new MC brightening up

Khabibullin+22

Recent Integral Results on X-ray echoes in CMZ

- Sgr B2 decrease slope flattened in 2011
- Residual em. compatible with reflection: multiple scattering ?
- Or ... LECRp (s~2.7 > DSA)
 => higher ionization rate than measured
- Unres. P-S seen by Nu*:
 < 50% contribution

Kuznetsova+22

CMZ Soft X-ray Line Emission as mapped by XMM-Newton

Red: Si xiii Green: S xv Blue: Ar xvii

Ponti+ 2015

CMZ Soft X-ray Line Emission: the structures

Ponti+ 2019 Nature

Discovery of Galactic Center X-ray Chimneys of Hot Gas

From XMM GCL Survey + Archival data:

- Detection of 2 long (1°≈ 160 pc) thermal (T ≈ 7 10⁶ K°) structures extending N & S of GC (d=8 kpc), width: ±0.4° ≈ 50 pc
- Similar parameters and origin N/S
- N-Ch co-spatial with R/IR GCLN
- N-S Differences: diff in ISM density
- Origin within 50 pc from Sgr A*
- 15pc-lobes (L \approx 8 10³⁸ erg/s, t_s \approx 3 10⁴ yr) nested but not clearly related
- Total power: $L_{X-Chi} \approx 4 \times 10^{39}$ erg/s Time scale: $t_s \approx 3 \ 10^5$ yr Energy: $E_{th-Chi} \approx 4 \ 10^{52}$ erg
- <u>Connect GC to Fermi Bubbles Bases</u>

XMM-Newton Soft X-ray GC 300 pc x 500 pc image: Red 1.5-2.6 Green 2.35-256 SXV line Blue 2.7-2.97 keV (continuum, no SXV ArXVII). Point Sources+dsh removed. Sgr A*, Base Fermi-B (Extrapolated Rosat)

The Galactic Center Chimneys

Credit: ESA – XMM-Newton

Ponti et al. 2019 Nature

R-IR-X GC Chimneys

Multiphase nature of Chimneys (P+21):

- MeerKAT (Radio) WISE (FIR) XMM(X)
- Correlated/interacting components: Hot plasma in X-r, warm dust in IR shocks + non-thermal filaments in R
- Byproduct of the same phenomenon that drives them all ?
- 200-pc Chimneys represent the channel connecting the quasicontinuous, but intermittent activity at the GC with (/ powering ?) the base of the Fermi bubbles
- "The prominent radio edges are signposts of the most powerful and recent outflow from the central parsecs, which has created the radio shell partially filled with X-ray emitting plasma and swaths of warm dust at the boundary."

X-rays: Nakishima+2013 Ponti+2019 R: Heywood+2019 M-w: Ponti+2021 Wang2021

SRG-eROSITA all-Sky Map

red for 0.3–0.6 keV green for 0.6–1.0 keV blue for 1.0–2.3 keV

Predehl, Sunyaev et al 2020 Nat

Discovery of eROSITA Bubbles

Estimated EB Energy ~ 10⁵⁶ ergs = x 10 FB Energy

Inflated by L~10⁴¹ erg/s for 10 Myr or by 1-2 Myr Seyf-like activity at L~10⁴³ erg/s of Sgr A*

~14 kpc

~6 kpc

~14 kpc

~9 kpc

FBs

Comparison eROSITA – FERMI: Red: gamma-rays Fermi bubbles Cyan: 0.6-1 keV eROSITA bubbles

Geometry of eROSITA (EBs; yellow) and Fermi bubbles (FBs purple) with respect to Galaxy & Solar System: much larger => E at the limit of what provided by the last MW star burst episode => GC SMBH AGN-type activity ?

Summary of X-Ray Obs. of Galactic Center

- Galactic Center region observed regularly in the last 20 yr with Chandra, XMM, Integral, Suzaku, NuSTAR, Swift, SRG ...
- Sgr A* detected and studied: persistent from inefficient accret. flow (+outflow), variable em. from NT flares seen also in M/NIR
- CMZ Diffuse NT emission: echoes of SgrA* recent past (100-1000 yr) outbursts (~ 10⁶ x Quiescent X-ray emission)
- Soft Diffuse emission from hot (1 keV) gaz in Chimneys: more ancient GC activity (SMBH AGN-like ? / Star Formation burst ?)
- Large variety of HE sources & phenomena: XRB, PSR/Magn, SNR, PWN, Source populations of AB, (magn.)CVs .. + XRB inner cusp
- Diffuse thermal hard (6 keV) emission: unresolved sources like G. Ridge or real diffuse component ? ... still controversial
- Link with HE (GeV, TeV) sources => GC CR content, acceleration diffusion interaction
- GC Feedback to entire galaxy powering Fermi/eROS Bubbles

Perspectives of H-E Obs. of Galactic Center

• Chandra, XMM-Newton, Swift, Nu-STAR, INTEGRAL, Fermi, Hess still in operation ...

- SRG/eRosita (2019 ...) German/Russia (Obs. stopped now !)
- XIPE (launched 12/2021) NASA+: im-polarimetry in 1-10 keV
- XRISM (2023 ?) JAXA/NASA+: fine X-ray im-spectroscopy
- CTA (2025-....) Europe+: ground TeV γ -Ray Obs.
- ATHENA (2034) ESA L2+: super-fine X-ray im-spectroscopy

X-Ray polarization measurements of GC echoes

- Compton scattered rad. is linearly polarized up to 100% for 90° scattering angle. Direction to external illuminating source is perpendicular to pol. direction
- Echoes Polarization Measurement can provide incidence angle => MC line of sight position (some degeneracy)
- Issues: contamination, weakness of fading GC MCs, incident rad. polariz.
- XIPE could detect 4-8 keV Pol (only) in G011-011 of Sgr A complex with 2 Ms obs. (for assumed MC locations)
 - Methods to increase sensitivity allow measure G011-011 pol => LoS location within 4 -7 pc (for assumed condit.)
- VERY CHALLENGING experiment

Churazov+02 17a 17b Marin+ 14 15 Kabibullin+20 XIPE sim.: DiGesu+20 **Ferrazzoli+21**

An X-Ray view of the Galactic Center

Thanks

An X-ray View of the GC – Fero10, Toulouse 1/4/22