

Jet asymptotic collimation : how does it depend on the source properties ?

Thomas Jannaud (IPAG, Grenoble) Jonathan Ferreira (IPAG, Grenoble) Claudio Zanni (INAF, Turin)

March 31, 2022

Presentation for the 10th FERO meeting

Astrophysical jets

Radio Galaxy Hercules A

6 10⁵ light years

Microquasar 1E1740.7-2942

3 light years

YSO HH30

7 10⁵ light years

Quasar 3C175 YLA 6cm image (c) NRAO 1996

2

10⁻² light years

Collimation properties

• Magnetic field and electric current \Rightarrow Acceleration and collimation

Jet axis

Source

 B_{ω}

 $oldsymbol{ imes}$

Collimation properties

• Magnetic field and electric current \Rightarrow Acceleration and collimation

Source

Collimation properties

- Magnetic field and electric current \Rightarrow Acceleration and collimation
- Asymptotic current \Rightarrow Observable shape (Heyvaerts & Norman 1989; 2003)
- How is the asymptotic current linked to the source ?

Jet axis

Source

Jet source

- What kind of jet source ?
- Black hole (Blandford & Znajek 1977)
- Accretion disk (Blandford & Payne 1982) ⇒ Jet-Emitting Disk (JED, Ferreira 1997)

Jet source

- What kind of jet source ?
- Black hole (Blandford & Znajek 1977)
- Accretion disk (Blandford & Payne 1982) ⇒ Jet-Emitting Disk (JED, Ferreira 1997)

Jet source

- What kind of jet source ?
- Black hole (Blandford & Znajek 1977)
- Accretion disk (Blandford & Payne 1982) \Rightarrow Jet-Emitting Disk (JED, Ferreira 1997)

Collimation of jets emitted from JEDs

• Self-similar ansatz (Blandford & Payne 1982, Contopoulos & Lovelace 1994, Ferreira 1997)

Collimation of jets emitted from JEDs

- Self-similar ansatz (Blandford & Payne 1982, Contopoulos & Lovelace 1994, Ferreira 1997)
- Recollimation present \Rightarrow shocks expected (Ferreira 1997, Polko & al. 2010)

Spine

 R^{d}

Numerical MHD simulations

Two-component outflow :

 $R_{ext} = 5650.4 R_{d}$

- Inner spine : Non-rotating central object (Schwarzchild Black Hole)
- Jet : Emission as in Ferreira 1997 (see Marcel+ 2018ab; 2019; 2020; 2021) on X-ray binaries Non-relativistic, unprecedented scales

Jet-Emitting Disk *Numerical setup*

Jet

Spine

Numerical MHD simulations

Two-component outflow :

 $R_{ext} = 5650.4 R_{d}$

- Inner spine : Non-rotating central object (Schwarzchild Black Hole)
- Jet : Emission as in Ferreira 1997 (see Marcel+ 2018ab; 2019; 2020; 2021) on X-ray binaries Non-relativistic, unprecedented scales

$$\begin{split} \text{For a Schwarzchild black hole, } R_d &= R_{ISCO} = 6 \frac{GM}{c^2} \\ \text{For a } 10^{10} \ M_\odot \ \text{black hole :} \\ R_d &= 5.10^{-3} pc \\ R_{ext} &= 30 pc \end{split}$$

~0.5 Mpc

R_d Jet-Emitting Disk Numerical setup

Jet

Numerical MHD simulations

Jannaud, Zanni & Ferreira, submitted to A&A

MHD recollimation shocks

IPAG

MHD recollimation shocks

IPAG

Institut de Plané

Influence of the spine

- Apathic simulations with the JED parameter space 0
- Strong influence of the central object rotation \bullet

17

Jets emitted from JEDs of a large radial extent \Rightarrow Recollimation shocks

- 2D MHD simulations on unprecedented scales in space and time
- Jannaud, Zanni & Ferreira, submitted to A&A

18

Jets emitted from JEDs of a large radial extent \Rightarrow Recollimation shocks

- 2D MHD simulations on unprecedented scales in space and time
- Jannaud, Zanni & Ferreira, submitted to A&A
- Comparisons to observations of AGN and YSO jets \Rightarrow JEDs of finite size

Conclusion

Strong influence of the spine on collimation

- Possible presence of a Blandford & Znajek outflow (see Barnier et al. 2021)
- Preliminary results (other simulations in the making, including in 3D)

McKinney & Blandford (2009)

Collimation of the magnetic field lines

Weak and multiple recollimation shocks

Evolution of the compression rate along the shocks

 $\kappa = 0, 2$

Fig.6 of Ferreira(1997) : magnetic field lines for κ from 0,005 (outermost) à 0,05 (innermost)

Evolution of the shock altitude Z_{shock} with κ and α

1.00

15/16

 $z_{tp}(\alpha)$ $z_{ax/s}(\alpha)$

Influence of the magnetic field topology : α

Fig.2 of Contopoulos et Lovelace(1994) : magnetic field lines for a = 12,8/16(a), a = 14,4/16 (b) et a = 16,3/16 (b)

MHD recollimation shocks

Truncated simulations

27

5000 4000 3000 2000 1000 SAD 2000 3000 5000 1000 4000

R

r,

- Self-similar ejection from a finite JED •
- No ejection after r₁ Standard Accretion Disk (SAD)
- Observation of shocks ? What characteristics ? \bullet

Truncated simulations

Addition of a constant vertical magnetic field

