

The WINE photoionisation and spectroscopic model

Winds in the Ionised Nuclear Environment

Alfredo Luminari INAF – IAPS and Observatory of Rome (OAR)

In collaboration with:

A. Marinucci, R. Middei (ASI), M. Laurenti (UNI-ToV), F.Nicastro, E. Piconcelli, L. Zappacosta and all the AGN group @ OAR, F. Tombesi (UNI-ToV), L. Piro (IAPS), F. Fiore (INAF-OATs), K. Fukumura (J. Madison Univ. USA) + many others!

The WINE model

Outline

- *i.* X-ray Outflows in AGNs: where we stand now
- *ii.* The WINE photoionisation model:
 - a. Radiative transfer
 - b. Relativistic effects
- *iii. WINE at play:*
 - a. Location, geometry and energetic of the UFO in PG1448+273
 - b. The variable 0.3 c UFO in the low-luminosity Seyfert NGC 2992
- iv. Conclusions

i. X-ray Ultra Fast Outflows in AGNs: where we stand now

P-Cygni profile (PDS456; Nardini+15)

Relativistic winds at accretion disk scales.

Observed through spectroscopy, as blueshifted absorption/emission imprinted on the continuum spectrum of the AGN, mainly at $E \ge 5 \ keV$

i. X-ray UFO in AGNs

i. X-ray UFO in AGNs

Key properties:

- > Outflowing velocity $v_{out} = 0.1 0.4 c$
- > Column density $N_H = 10^{22} 10^{24} \ cm^{-2}$
- > Opening angle $\theta = 45 60 \ deg$
- > Energy flux \dot{E}_{out} up to $20 40\% L_{AGN}$

FEEDBACK: UFO expands to the host galaxy, sweeping

its gas reservoir and quenching star formation

Fiore+17, King & Pounds 15 , Di Matteo+05, Faucher-Giguère+12, Menci+19, Tombesi+10,+13 i. Why do we need UFOs?

Two-phase model:

 Momentum driven outflow shock front is cooled -> thermal energy is lost, only wind momentum is conserved

$$\rightarrow \dot{P}_{gal} = \dot{P}_{UFO}$$

 Energy driven outflow shock front expands adiabatically -> energy is conserved during propagation

$$\rightarrow \dot{E}_{gal} = \dot{E}_{UFO} \rightarrow \dot{P}_{gal} = \dot{P}_{UFO} \cdot \frac{v_{UFO}}{v_{gal}} \approx 50 \ \dot{P}_{UFO}$$

i. Why do we need UFOs?

Energy of galactic and nuclear outflows:

Smith+19

Tombesi+12, Gofford+15

i. Where do we stand now?

ii. The WINE spectroscopic model

Current approach:

General-purpose photoionisation codes (*Cloudy, XSTAR, ...*)

- i. Photoionisation simulations **do not accurately reproduce** the properties of the source
- ii. Simulated spectra rely on several assumptions on the **geometry** and the **kinematics** of the **wind**
- iii. The wind is modeled as a layer of gas at rest with turbulent broadened features, which are a posteriori blue-shifted to account for the wind velocity smearing

WINE model

Winds in the Ionised Nuclear Environment

- i. WINE is a **self-consistent model** for absorption and emission from disk winds. It is highly customizable and can mimic different launching scenarios.
- ii. The **physical**, **kinematical and geometrical parameters** are determined fitting the model to the observed spectra and minimizing the χ^2 statistic
- iii. Relativistic effects are taken into account in the radiative transfer calculations. Absorption and emission profiles are directly built according to the geometry and velocity profiles.

ii. The WINE spectroscopic model

Parameters of the model:

- 1. Incident spectrum (SED and luminosity)
- 2. Ionization parameter $\xi(r)$
- 3. Column density N_H
- 4. Launching radius r_0
- 5. Density and velocity profiles:

$$n(r) = n_0 \left(\frac{r_0}{r}\right)^{\alpha}$$
, $v(r) = v_0 \left(\frac{r_0}{r}\right)^{\beta}$

5. Geometry of the source: θ_{out} , θ_{in} , *i*

Best-fit values are determined comparing the model with the data and minimizing the χ^2 statistic.

 $\rightarrow C_f$, \dot{M}_{out} , \dot{E}_{out} are determined self-consistently

ii a. Radiative transfer

<u>Multi-shell radiative transfer with a public code</u> (e.g. XSTAR) to account for the ionisation, velocity, density profiles

Monte Carlo modellisation of emission profiles

 N_H

 δN_H

δr

ii b. Relativistic effects

Absorption spectrum for $\underline{v=0}$

Luminari+20

ii b. Relativistic effects

Absorption spectrum for v = 0.1 c

iii. WINE at play: The UFO in PG1448+273

A new, powerful UFO from a luminous quasar: $L_{bol} = 0.75 L_{Edd}$

- $v_{avg} = 0.15 c$
- $\theta_{out} > 72^\circ \rightarrow C_f > 0.69$

•
$$\chi^2_{\nu} = 1.11$$

Zero-th order formulas for the wind energetic:

$$\dot{M}_{out} = 4 \pi r_0 C_f N_H \, \mu \, m_P \, v_{out} = 0.25 \, M_{\odot} \, yr^{-1}$$
$$\dot{E}_{out} = \frac{1}{2} \dot{M}_{out} \cdot \, v_{out}^2 = 1.7 \cdot 10^{44} erg \, s^{-1}$$

<u>Assuming</u>: constant wind density, spherical symmetry, no relativistic effects

Zero-th order formulas for the wind energetic:

$$\dot{M}_{out} = 4 \pi r_0 C_f N_H \mu m_P v_{out} = 0.25 M_{\odot} yr^{-1}$$
$$\dot{E}_{out} = \frac{1}{2} \dot{M}_{out} \cdot v_{out}^2 = 1.7 \cdot 10^{44} erg \, s^{-1}$$
Updated formulas:

$$\dot{M}_{out} = 2 \,\mu \, m_P \int_0^{2 \,\pi} d \,\phi \int_0^{2 \,\pi} \sin \theta \, d \,\theta \int_{r_0}^{r_1} n(r) v(r) r \, dr$$
$$= 0.65 \, M_{\odot} \, yr^{-1} = 2.0 \dot{M}_{acc}$$

 $\dot{E}_{out} = (\gamma - 1)\dot{M}_{out}c^2 = 4.4 \cdot 10^{44} \ erg \ s^{-1} = 24\% \ L_{bol}$

- $\dot{M}_{out} > \dot{M}_{acc}$: impact on disc stability?
- \dot{E}_{out} enough to trigger galactic feedback!

iii. WINE at play: The UFO in PG1448+273

iii. WINE at play: The UFO in PG1448+273

iii. WINE at play: a 0.3c UFO in the low-luminosity Seyfert NGC 2992

thanks A. Marinucci for the plots!

Luminari, Marinucci+22 (submitted)

Best fit values:

- $v \approx 0.30 c$
- $\log(\xi) \approx 4.5$
- $N_H \approx 6 \cdot 10^{24} cm^{-2}$

<u>What about the launching radius r_0 ?</u>

Cannot be directly probed due to the limited spectral S/N

\rightarrow However:

By requiring that the best fit intervals for ξ encompass the variation of $\xi(r)$ along the wind column, we obtain an <u>upper</u> <u>limit</u> for the launching radius r_0 :

 $r_0 \leq 5$ Schwarzschild radii

Also matches the UFO typical crossing scale!

Luminari, Marinucci+22 (submitted)

Luminari, Marinucci+22 (submitted)

<u>What about the launching radius r_0 ?</u>

Cannot be directly probed due to the limited spectral S/N

\rightarrow However:

By requiring that the best fit intervals for ξ encompass the variation of $\xi(r)$ along the wind column, we obtain an <u>upper</u> <u>limit</u> for the launching radius r_0 :

Conclusions

The WINE model

- Constrain the physics and the geometry of the wind
- Derive \dot{M}_{out} , \dot{E}_{out} and estimate the impact on the galaxy
- Radiative transfer, Monte Carlo emission, special relativity

Velocity, location and energetic of the UFO in PG1448+273

- v, ξ, N_H, r_0, C_f directly constrained from the fit
- Galactic feedbackUV X-ray interplay?
- High mass outflow

counts s⁻¹ keV⁻¹ cm

ratio

Rest-frame Energy (keV)

Variable 0.3 c UFO in the Seyfert NGC 2992

- Wind characterisation on 5ks time scale
- $\succ v, \xi, N_H$ determined with WINE
- \succ Limits on r_0, n
- Powerful, "quasar-like" UFO

SRG/eROSITA

0.3-2.3 keV - RGB

Thank you for the attention!

Question/comments? Email me! alfredo.luminari@inaf.it

Related works: Luminari A., Marinucci A., Bianchi S. et al, 2022, MNRAS submitted Luminari A. et al, 2022, A&A in prep. Middei A., Marinucci A., Braito V. et al, 2022, MNRAS submitted Laurenti M., Luminari A., Tombesi F. et al, 2021, A&A, 645, A118 Luminari A., Nicastro F., Elvis M. et al, 2021, A&A, 646, A111 Marinucci A., Bianchi S., Braito V. et al, 2020, MNRAS, 496, 3 Zappacosta L., Piconcelli E., Giustini M. et al, 2020, A&A, 635, L5 Luminari A., Tombesi F., Piconcelli E., et al, 2020, A&A, 633, A55

NGC 2992 WINE model PG 1448+273

Absorption/emission relativistic effects