# Spectral and temporal properties of NGC 2992 across the years

\*\*

111

11

-

#### **FERO 10**

Finding Extreme Relativistic Objects

Toulouse, 30 March -1 April, 2022



品書





<u>Riccardo Middei,</u> Andrea Marinucci, Valentina Braito, James Reeves, Barbara De Marco Stefano Bianchi, Giorgio Matt, Emanuele Nardini, Alfredo Luminari, Fausto Vagnetti, Matteo Perri



### NGC 2992 z=0.00773

NGC 2993

## Outline

-Yearly variability
-Monthly variability
-Daily variability
-Ksec variability



## NGC 2992: data availability

#### Rich dataset ~20 years of time coverage

#### XMM-Newton Science Archive

HOME SEARCH

Results #1

Close all

**Back to Search** 

COMMAND & URL ACCESS

INTERACTIVE ANALYSIS

TAP QUERIES

ASTROQUERY

More than 10 XMM-Newton exposures

| OBSERVATIONS (12) |   |            |                           |      |          |               |          |                |                |      |     |
|-------------------|---|------------|---------------------------|------|----------|---------------|----------|----------------|----------------|------|-----|
| Column            | S | Colu       | Display selected          |      |          | Add to Basket | Save     | e table as     | Send table to  |      |     |
|                   |   | Obs.ID     | EPIC                      | RGS  | BKGD     | ESASky        | Target   | RA             | DEC            | Rev  | Dis |
| Ŧ                 | ø | 0840920201 | 111.111                   |      |          | -             | NGC 2992 | 09h 45m 42.04s | -14d 19' 35.0" | 3555 |     |
| <u>+</u>          | ø | 0840920301 | 1Hall                     |      | <u> </u> | -             | NGC 2992 | 09h 45m 42.04s | -14d 19' 35.0" | 3556 |     |
| <u>+</u>          | ø | 0147920301 | ticali<br>•               | r C  |          | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 630  | C   |
| <u>+</u>          | ø | 0654910301 | 111-111                   |      | Authors  | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 1906 | C   |
| <u>+</u>          | ø | 0654910401 | Contraction of the second | -    |          | <b>e</b>      | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 1911 | C   |
| Ŧ                 | ø | 0654910501 | 616,441                   |      |          | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 1916 | C   |
| Ŧ                 | ø | 0654910601 | • 116 and                 | hide | 10/14/1  | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 1921 | C   |
| Ŧ                 | ø | 0654910701 | the set                   |      |          | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 1999 | C   |
| Ŧ                 | ø | 0654910801 | the set                   |      |          | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 2004 | C   |
| Ŧ                 | ø | 0654910901 | 11C and                   |      |          | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 2009 | O   |
| <u>+</u>          | ø | 0654911001 | 416.440                   |      | Freedow  | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 2014 | C   |
| <u>+</u>          | ø | 0701780101 | 116.441                   |      |          | -             | NGC 2992 | 09h 45m 41.99s | -14d 19' 35.0" | 2458 | C   |
|                   |   |            |                           |      |          |               |          |                |                |      |     |

![](_page_2_Figure_10.jpeg)

| - | - |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|-----|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | ۰.  |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | с.  |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   | , |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | ÷   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
| * | ٠ | ٠ | ٠ | ٠ | ٠ | * | * | ٠ | ٠ | ٠ | * | * | * |  | Ξ.  |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | Ξ.  |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   | - |   | - |   |   |   |   | - | - | - |   |   |   |  |     |   |
| - | - | - | - | - | - | - | - | - | - | - | - | - |   |  | -   |   |
|   | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | с.  |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | Ξ.  | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | Ξ.  |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | ÷., | I |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | ÷   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |     |   |

### NGC 2992: data availability

#### Rich dataset ~20 years of time coverage

EPIC pn OBS. 1-4

![](_page_3_Figure_3.jpeg)

![](_page_3_Picture_4.jpeg)

EPIC pn OBS. 5-9

![](_page_3_Figure_6.jpeg)

![](_page_3_Figure_7.jpeg)

## NGC 2992 as observed by Swift: light curves

![](_page_4_Figure_1.jpeg)

![](_page_4_Picture_3.jpeg)

## NGC 2992 as observed by Swift: light curves

![](_page_5_Figure_1.jpeg)

![](_page_5_Picture_4.jpeg)

## NGC 2992 as observed by Swift: light curves

![](_page_6_Figure_1.jpeg)

![](_page_6_Picture_3.jpeg)

## NGC 2992 as observed by Swift: correlations

![](_page_7_Figure_1.jpeg)

.

We get a significant and strong correlation between the soft and the hard X—rays  $(P_{cc}=0.99, P(<r)<0.01)$ 

> This strongly suggests only 1 component is shaping the X-ray emission of NGC 2992

![](_page_7_Picture_5.jpeg)

## NGC 2992 as observed by Swift: correlations

![](_page_8_Figure_1.jpeg)

No correlation between soft/hard X-rays and UV UV are absorbed by the host though a long term trend emerged from the light-curves

![](_page_8_Picture_3.jpeg)

## NGC 2992 as observed by Swift: yearly variations

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

-Variations increase as a function of the observing time

-A less variable state was observed in 2019

-A more variable state was observed in 2021

Tentative trend: the higher the flux the smaller the amount of variability

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

NGC 2992 as observed by Swift: monthly variations

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_3.jpeg)

#### Tentative trend:

The higher the flux the smaller the amount of variability

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

## NGC 2992 as observed by Swift: spectral properties

![](_page_11_Figure_1.jpeg)

## NGC 2992 as observed by Swift: spectral properties

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

## NGC 2992 as observed by XMM/NuSTAR:

#### Two XMM-Newton orbits and a quasi-simultaneous NuSTAR exposure were triggered

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: light-curves

![](_page_14_Figure_1.jpeg)

Observation 1 XMM-Newton only

> X-rays < 1keV ~constant

X-rays in the 1-3 keV: highly variable

X-rays in the 3-10 keV: highly variable

> X-ray ratio: fairly constant

Observation 1 XMM/NuSTAR

X-rays < 1keV: ~constant

X-rays in the 1-3 keV: moderately variable

X-rays in the 3-10 keV: moderately variable

X-rays in the 10-79 keV: moderately variable

> X-ray ratio: Constant

![](_page_14_Picture_13.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: Fractional-variability

 $\lfloor 0 \rfloor$ 

![](_page_15_Figure_1.jpeg)

Tentative trend:

#### The higher the flux The larger the amount of variability

Shot-models would account for this trend

![](_page_15_Picture_5.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: Fractional-variability

10

![](_page_16_Figure_1.jpeg)

We used three different components: -1 for the primary continuum -1 for the reflection component 1- for the soft photoionised emission

#### See Parker+2020 for details

#### Tentative trend:

#### The higher the flux The larger the amount of variability

#### Shot-model would account for this trend

![](_page_16_Picture_7.jpeg)

![](_page_17_Figure_1.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: The Fe K complex

![](_page_18_Figure_1.jpeg)

residuals to an absorbed power-law

A narrow Fe K $\alpha$  is added to the absorbed power-law

A small broadening of the Fe K $\alpha$  is considered (~45 eV)

Adding the Fe Hea

Adding the Fe Ly $\alpha$  and the Fe K $\beta$ 

![](_page_18_Picture_7.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: Spectral fitting 1 (time-average)

![](_page_19_Figure_1.jpeg)

MyTorus+Power-law:

-photoionised emission due to hot plasma (2tables)

-Emission lines

$$\begin{split} N_{Habs} = 7.8 \pm 0.2 \ (*10^{21} \ cm^{-2}) \\ \Gamma = 1.68 + /-0.01 \\ N_{Hmyt} = 9.6 \pm 2.7 \ (*10^{22} \ cm^{-2}) \\ E_{cut} * = 300 \ keV \\ F_{2-10 \ keV} = \ (8.6/7.5) * 10^{-11} erg \ cm^{-2} \ s^{-1} \end{split}$$

![](_page_19_Picture_6.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: Spectral fitting 1b (time-average)

![](_page_20_Figure_1.jpeg)

MyTorus+Power-law:

$$\begin{split} N_{Habs} = 7.8 \pm 0.2 \ (*10^{21} \ cm^{-2}) \\ \Gamma = 1.68 + / -0.01 \\ N_{Hmyt} = 9.6 \pm 2.7 \ (*10^{22} \ cm^{-2}) \\ E_{cut} * = 300 \ keV \\ F_{2-10 \ keV} = \ (8.6/7.5) * 10^{-11} erg \ cm^{-2} \ s^{-1} \end{split}$$

#### Borus:

$$\begin{split} N_{Habs} = 7.8 \pm 0.1 \ (*10^{21} \ cm^{-2}) \\ \Gamma = 1.67 \pm 0.01 \\ N_{Hmyt} = 8.7 \pm 0.4 \ (*10^{22} \ cm^{-2}) \\ E_{cut} > 390 \ keV \\ kT_{corona} > 115 \ keV \end{split}$$

![](_page_20_Picture_6.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: Spectral fitting 2 (time-resolved)

![](_page_21_Figure_1.jpeg)

No correlations among the parameters (except for  $N_H\&\Gamma$ ,  $F_{soft}\&F_{hard}$ )

Note how NuSTAR data constraint the reflecting matter

We know that  $\Gamma$  and  $E_{cut}$ are tightly linked to the physics of the hot corona, why flux variations are not linked with spectral variations?

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: Spectral fitting 2 (time-resolved)

![](_page_22_Figure_1.jpeg)

No correlations among the parameters (except for  $N_H\&\Gamma$ ,  $F_{soft}\&F_{hard}$ )

Note how NuSTAR data constraint the reflecting matter

We know that  $\Gamma$  and  $E_{cut}$ are tightly linked to the physics of the hot corona, why flux variations are not linked with spectral variations?

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: the hot corona

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

## Summary

NGC 2992 is a highly variable across different timescales (more than \*10) Fairly constant column of the absorbing and scattering matter (on years timescales) The spectral component domination NGC 2992 is the continuum (and its variable Fe K transients, see Marinucci+2020) The NGC 2992 X-ray emission is consistent with being globally Compton-thin Shot-models may explain the variability properties with some caveats Decoupled spectral and flux variability may be the result of a very hot corona

Soon more on ARXIV, Middei+2022

![](_page_24_Picture_3.jpeg)

### NGC 2992 as observed by XMM/NuSTAR: the hot corona

![](_page_25_Figure_1.jpeg)

Assuming the hot corona to be slab-like we are in full pair-production regime. Is this giving us suggestions on the coronal geometry?

![](_page_25_Picture_3.jpeg)