

The current state of disk wind observations in galactic Black Hole LMXBs through X-ray absorption lines

Maxime Parra¹⁻², Pierre-Olivier Petrucci¹, Stefano Bianchi², Vittoria Gianolli¹⁻², Francesco Ursini²

Finding Extreme Relativistic Objects 10th Edition

March 31 2022

^{1/25} The current context Accretion in Black Hole X-ray Binaries

Low-Mass X-ray Binaries
 Accretion through Roche-Lobe overflow

 \rightarrow Accretion disk

Low-Mass X-ray Binaries
 Accretion through Roche-Lobe overflow

 \rightarrow Accretion disk

Switch between two standard states

Hard State

→ Hard SED, jet in radio signature of (possibly) truncated accretion disk

■ Soft State → Soft SED, no jets, accretion disk extends close to the EH

^{3/25} The current context Accretion in Black Hole X-ray Binaries

Low-Mass X-ray Binaries

Accretion through Roche-Lobe overflow

 \rightarrow Accretion disk

Switch between two standard states

Hard State

Soft State

First detections of blueshifted narrow absorption lines before 2000[2][3]
 material + low speed = not jet

□ Many detections in the 2000s with the new generation of XRTs

[2] Ueda et al. 1998

[3] Kotani et al. 2000

^{5/25} The current context

Winds detections in Black Hole X-ray Binaries

First detections of blueshifted narrow absorption lines before 2000[2][3]

material + low speed = not jet

First global analysis by Ponti et al. In 2012

[2] Ueda et al. 1998[3] Kotani et al. 2000

^{6/25} The current context

Winds detections in Black Hole X-ray Binaries

UGA

Grenoble Alpes

Université

First detections of blueshifted narrow absorption lines before 2000[2][3]

material + low speed = not jet

[2] Ueda et al. 1998[3] Kotani et al. 2000

[4] Ponti et al. 2012

^{7/25} The current context

Winds detections in Black Hole X-ray Binaries

First detections of blueshifted narrow absorption lines before 2000[2][3] material + low speed = not jet

<section-header><section-header><equation-block><equation-block>

[3] Kotani et al. 2000

^{8/25} The current context

Winds detections in Black Hole X-ray Binaries

Low-Mass X-ray Binaries

Accretion through Roche-Lobe overflow

 \rightarrow Accretion disk

^{9/25} The current context

Winds detections in Black Hole X-ray Binaries

Low-Mass X-ray Binaries

Accretion through Roche-Lobe overflow

 \rightarrow Accretion disk

	QUICK FIELD:	Author	First Author	Abstract	Year	Fulltext	All Search Terms	•
	"black hole" + "low mass X-ray Binary" year:2012-2022							
Your search returned 533 results								

Due time for a new analysis

To do a global analysis, we need: □A sample of sources • All the BHLMXB candidates from BlackCAT[5] + WATCHDOG[6] 68 sources + 13 more □Data from these objects • Let's start with all XMM EPIC pn exposures → 140 exploitable spectra from 33 sources

A Methodology

[5] Corral-Santana et al. 2016[6] Tetarenko et al. 2016

^{13/25} Methodology Line detection

UGA

Grenoble Alpes

Université

Example of output after step 2 (blind search) in 4U1630-47

^{14/25} Methodology Line detection

Grenoble Alpes

Université

Generation Follow-up of the previous exposure after step 3 (line fit)

^{15/25} Methodology Line detection

Generation Follow-up of the previous exposure after step 3 (line fit)

Tested in a second blind search

^{16/25} Results Global HID behavior

□ Main HID for the sample with sources as color

Almost all detections are in soft or in transitioning states

Université Grenoble Alpes

^{17/25} Results Global HID behavior

□ Main HID for the sample with blueshift in km/s

There are 33 sources with XMM exposures, 15 of which have constraints on their inclination.

Detections are considered significant above 0.99 confidence

	Number of sources with at least 1 detection	Number of individual significant detections
All Lines	10	46
FeXXV Kα	4	14
FeXXVI Kα	7	20
NiXXVII Κα	3	4
FeXXV Kβ	2	4
FeXXVI Kβ	2	4
FeXXVI Kγ	2	0

Université Grenoble Alpes

□All significant line detections are for high-inclined objects

Université Grenoble Alpes

QRepartition of the intrinsic line parameters

□Equivalent width – HR for all lines: "significant" correlation

□Hints at multiple correlations in 4U for FeXXVI Kα

\Box Hints at multiple correlations in 4U for FeXXV K α

\Box Opposing trends between K α and K β lines

^{25/25} Prospects

We can test other correlations from the analysis

- Presence/absence of emission lines
- Ratios between parameters of lines of the same complex
- Differences between linked/unlinked line parameters

 Caveats/improvements of the analysis itself
 Use more physical models for tabulated objects
 Probe at more exotic lines/parameter spaces (redshifted lines/search in strong emission features/...)

Add MOS exposures when available, and Chandra/Suzaku data

Compute stability curves and check the compatibility with physical models

Thanks for your attention !

Methodology Line detection

- Methodology
- Data reduction
 - data download, reduction and products (spectra) computation
- Continuum + High-Energy fits
 - simplistic models (absorbed pl +/diskbb) in [0.3-10]keV and [4-10]keV
- Blind search
 - 2d $\Delta \chi^2$ map from the addition of a narrow line with varying E and F
- Second fitting procedure to get the line parameters
 - Progressive addition of significant emission/absorption components
- Significance assessment of the lines with MC simulations
 - Fakeit 'till you make it

Methodology • Line detection

Beside each final fit parameter/uncertainty and the flux in diverse bands computed from the continuum model, for all lines we store:

- The equivalent width/associated errors
- The blueshift/associated errors
- The line significance computed from the fakeit simulations (each line is considered significant above 99%)
- The 'linked' status of each line's energy

Methodology • Line detection

UGA

Grenoble Alpes

Université

Second blind search from the results of the incremental fit

Modeling and stability of absorption lines

The picture is much more complex now

What about intermediate states ?
Many observations but unclear global behavior

Thermal and/or MHD driving[5][6] to launch the material ? • $T_{wind} \ll T_{acc}$

The spectral shape affects the thermal stability and ξ
 Wind always here[7] but only detectable in the right conditions ?

[5] Díaz-Trigo & Boirin 2016

[6] Tetarenok et al. 2018 [7] Sánchez-Sierra

[7] Sánchez-Sierras & Muñoz-Darias 2020

Modeling and stability of absorption lines

□The wind thermal stability curves can be computed ■ Very sensitive to the SED → requires broad band data that doesn't exis

□With a bit of physically motivated[8] extrapolation...[9]

[9] Marcel et al. 2019

[1] Petrucci et al. 2021

[8] Marcel et al. 2018

Modeling and stability of absorption lines

UGA

Grenoble Alpes

Université

é.

Œ

d)

------ No hot wind

Hot wind

-2.5

-3.0

Modeling and stability of absorption lines

□Now to be compared with observations for objects with detections

