Image credit: NASA/JPL-Caltech

A careful search for X-ray detected intermediate-mass black holes

Hugo TRANIN, PhD student, IRAP, Toulouse, France 10th FERO meeting, 2022, March 30th

Outline

- 1) Context : how to search for IMBH in X-rays
- 2) Classification of X-ray sources
- 3) Results on ULX, HLX, TDE
- 4) Expectations for dwarf galaxies

Applications of an X-ray source classification

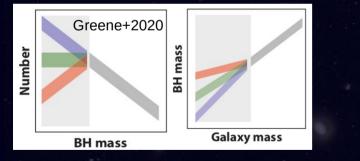
X-ray catalogues: about 10^6 sources, mostly serendipitous \Rightarrow automatic classification

Population studies, e.g. type II AGN, flaring stars, ULX...

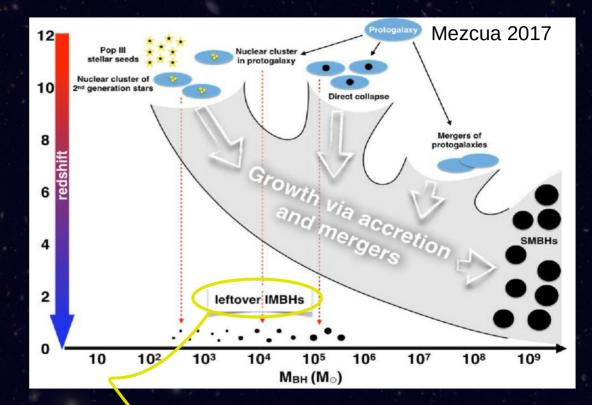
Find exotic objects (TDE, CLAGN...)

Separate galactic / extragalactic sources e.g. for photo-*z* computation

Identify relevant alerts for transient astronomy, e.g. multimessenger events



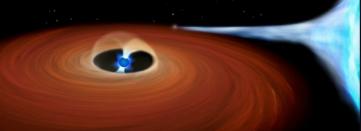
5'


NGC 3628 field

Intermediate-mass black holes (IMBH)

- 10² < M < 10⁵ M_{...}
- Uncertain formation
- Remnants of pop III ? Runaway merger in GC ? Direct collapse ?

Uncertain evolution into SMBH


- Hard to find !
 - Wait for efficient accretion (TDE)
- Find hidden BH in dwarf
- but also...

(Some) Ultraluminous X-ray sources contain IMBH

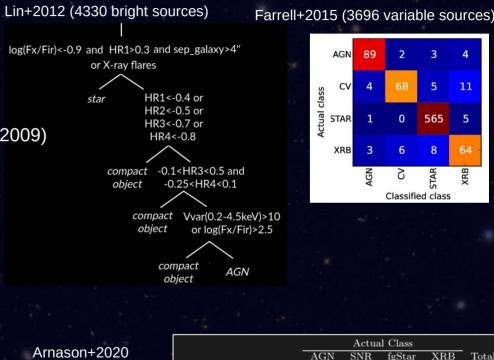
ULX : $L_X > 10^{39}$ erg/s, outside the nucleus $\Rightarrow L_X > L_{Edd}$ of a 8M_{sun} black hole

- Extrapolation of XRB (in « ultraluminous state »)
- Some are neutron star accretors, other are super-Eddington BH
- We expect IMBH in the most luminous (HLX, $L_X > 10^{41}$ erg
- 20% are background / foreground contaminants
- Use source classification to remove them

Sketch of a NS ULX, credit:NAOJ

Previous X-ray classification studies

Few are probabilistic


 \Rightarrow Use a Bayesian method

Almost all are on small samples (but see Pineau+2009) \Rightarrow Use the full X-ray catalogues

 Trade-off efficiency - interpretability \Rightarrow Develop visualisation tools to improve

Suboptimal catalogue enhancement \Rightarrow Supplement it with VO tools, careful correlations

Samples of known XRB, CV, TDE... are small \Rightarrow Use updated databases to enlarge them

Predicted Class

AGN

SNR

fgStar

XRB

Total

5

0

6

14

0

3

6

(943 M31 sources)

26

49

Total

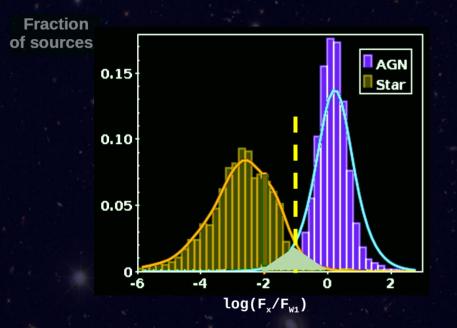
0

0

15

17

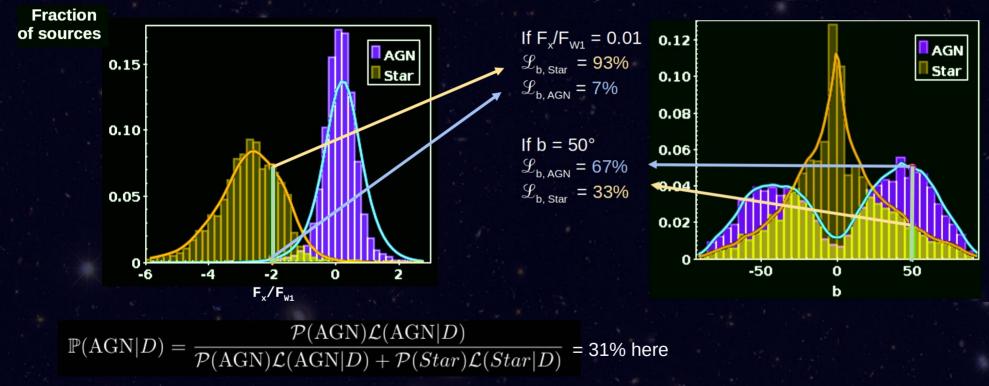
64


Step 1: take large catalogues and enhance them

X-ray	4XMM-DR11	600k	
	Chandra CSC2	315k	
	Swift 2SXPS	200k	
Ontical	Gaia EDR3	1.8G	
Optical	PanSTARRS	1.9G	
Infrared	2MASS	471M	
IIIIaleu	AIIWISE	747M	
Identification	AGN in the MIR (Secrest+2015)	1.3M	
	Stars : HIPPARCOS	1.2M	
	XRB : miscellaneous	~1500 X-ray sources	
	CV : miscellaneous	~500 X-ray sources	
Galaxies	GLADE (Dalya+2016)	1.9M -	
$\Rightarrow Enable data-mining + add meaningful observables F_{\chi}/F_{OPT} F_{\chi}/F_{IR} L_{\chi} F_{MAX}/F_{MIN}$			

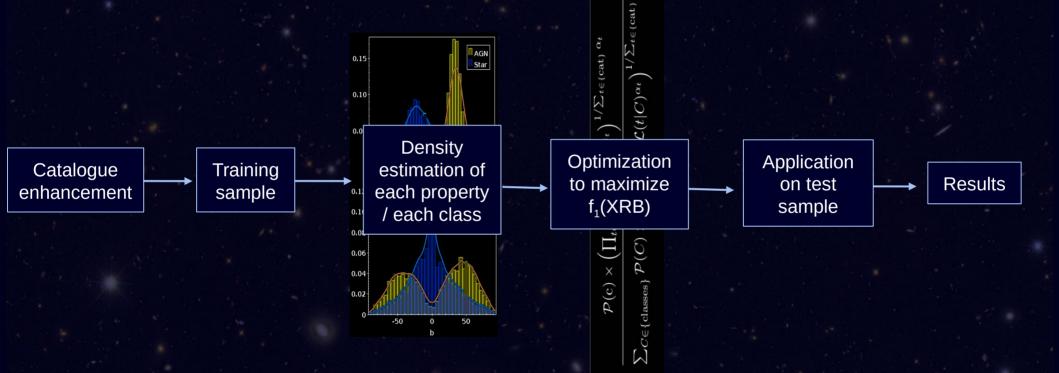
High sky density ⇒ multiple counterparts ⇒ bayesian treatment (*nway*, Salvato+2017)

Highly complete galaxy catalogue >1M galaxies at D<500Mpc


Step 2: use criteria

Possible criterion: $log(F_x/F_{w1}) < -1 \Rightarrow star$ $else \Rightarrow AGN$

... but overlap


Step 2: use criteria probabilities

Combine the 17 features \Rightarrow Naive Bayes classification

(with priors $\mathcal{P}(AGN)=0.75$, $\mathcal{P}(Star)=0.25$)

Final structure

CLAssification of X-ray sources using Bayesian Optimized Inference CLAXBOI public code, Tranin et al. A&A 2022

Results

Application to the whole catalogue

on 4XMM training sample

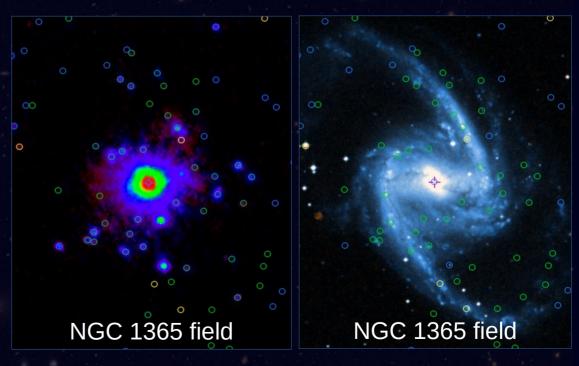
	AGN	Star	XRB	CV
$\rightarrow AGN$	18373	25	46	149
→ Star	15	6197	10	12
→XRB	80	12	479	10
$\rightarrow CV$	4	0	8	81
recall (%)	99.5	99.4	88.2	32.1
precision (%)	98.9	97.2	93.7	84.6
f ₁ -score	0.992	0.983	0.909	0.465

on 2SXPS

Truth \rightarrow	AGN	Star	XRB	CV	Total cl.
→AGN	19515	82	25	191	19813
→Star	44	4628	3	27	4702
→XRB	140	18	326	17	501
$\rightarrow CV$	9	9	2	124	144
Total	19708	4737	356	359	Average
recall (%)	99.0	97.7	91.6	34.5	80.7
precision (%)	97.0	98.6	90.7	85.5	92.3
Random Forest c	on 2SXPS	5		_	
Truth \rightarrow	AGN	Star	XRB	CV	Total cl.
$\frac{\text{Truth} \rightarrow}{\rightarrow \text{AGN}}$	AGN 5889	Star 7	XRB 20	CV 39	Total cl. 5955
→AGN	5889	7	20	39	5955
\rightarrow AGN \rightarrow Star	5889 6	7 1404	20 1	39 3	5955 1414
\rightarrow AGN \rightarrow Star \rightarrow XRB	5889 6 9	7 1404	20 1	39 3 5	5955 1414 102
$ \begin{array}{c} \rightarrow AGN \\ \rightarrow Star \\ \rightarrow XRB \\ \rightarrow CV \end{array} $	5889 6 9 7	7 1404 5 1	20 1 83 1	39 3 5 68	5955 1414 102 77

 \Rightarrow better results on XRB + better interpretability

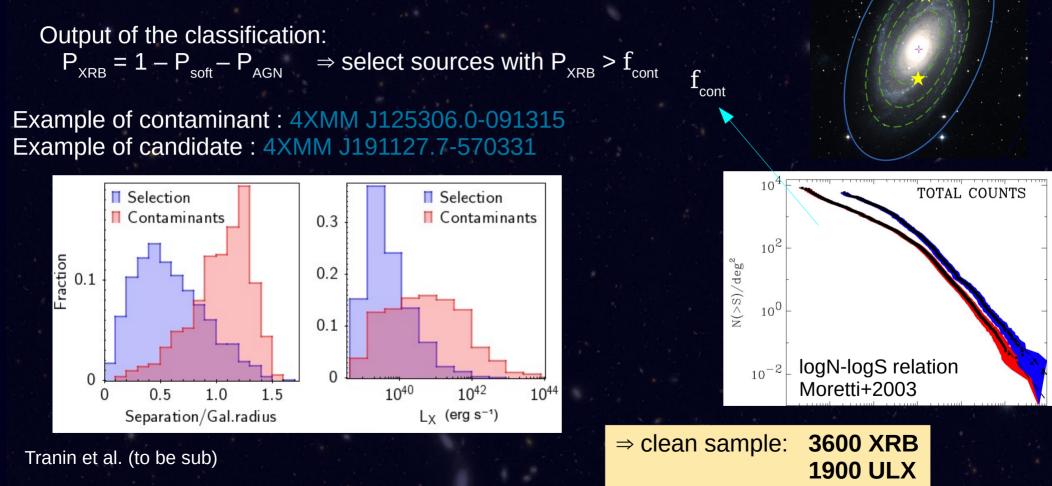
Tranin et al. A&A 2022


Results

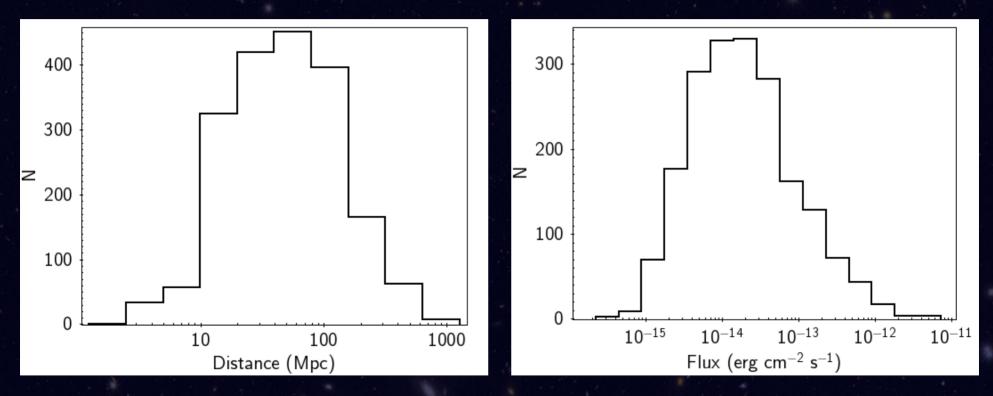
Application to nearby galaxies

on 4XMM x GLADE (Dalya+2016)

	AGN	Soft source	XRB
→AGN	1578	29	22
\rightarrow Soft source	15	54	19
\rightarrow XRB	65	23	358
recall (%)	95.2	50.9	89.7
precision (%)	95.8	68.9	80.4
f ₁ -score	0.955	0.585	0.848


Goal: Identify XRB and ULX in nearby galaxies

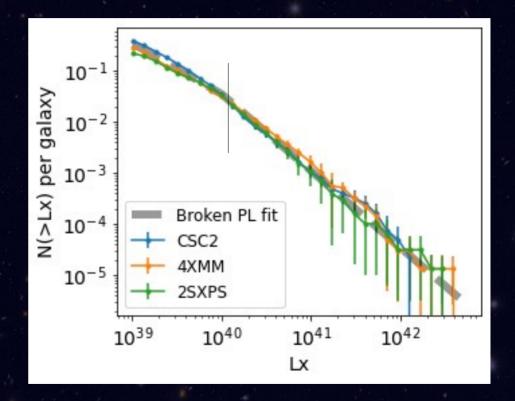
Tranin et al. to be sub


Results: ULX, HLX, TDE

Identifying XRB and ULX in nearby galaxies

ULX sample

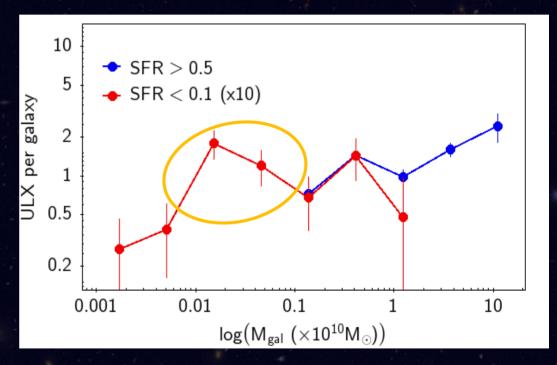
 \Rightarrow clean sample: **1900 ULX**

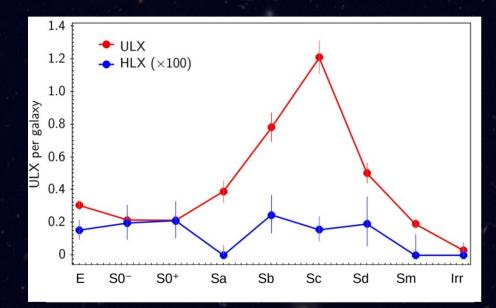

Tranin et al. (to be sub)

3. Results

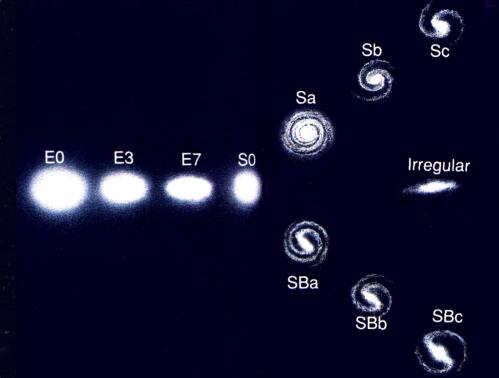
X-ray luminosity function

Significant break at 10⁴⁰ erg s⁻¹


- Already in Swartz+2004, Mineo+2012 but at low significance. Ruled out in Wang+2016
- Kaaret+2017 review: "Sources with luminosities above the break could represent a new class of objects"
- Not in population synthesis models (but see Lehmer+2020)
- Some ULX models cut at ~10⁴⁰ erg s⁻¹ (e.g. Krticka+2022)


ULX in dwarf galaxies – more IMBH ?

ULX are in excess in dwarf galaxies


- Environment where IMBH are expected (e.g. Chilingarian+2018)
- They can wander in the galaxy (Bellovary+2019, Reines+2020)

Environment of HLX

Unlike ULX, HLX reside both in spiral and elliptical galaxies

(clean sample: 45 HLX)

Diversity of HLX

Unstudied HLX from our sample

In ring galaxy, where source confusion is likely

 \Rightarrow spurious ?

Absorbed, close to edge

⇒ DG before merger ? background AGN ? In starforming galaxy, softer

 \Rightarrow extreme ULX ? DG after merger ? Soft/high, transient, in early-type galaxies

 \Rightarrow TDE ?

 \Rightarrow careful study + manual inspection Tranin et al. (to be sub)

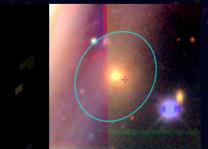
Tidal disruption event candidates

- Validation of our classification (outliers)
- XMM sample:

Known candidates

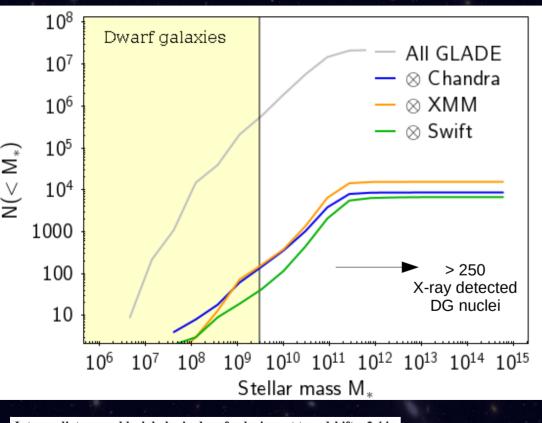
J215022.4-055109

(Lin+2018, Nature)


J081316.9+223853 (e.g.

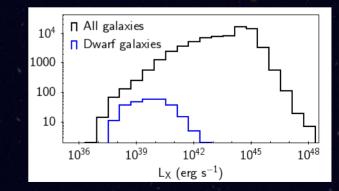
(e.g. Hinkle+2021)

HLX-1


(e.g. Farrell+2009)

New candidates

Prospect: IMBH in dwarf galaxies


Dwarf galaxies from GLADE

Mezcua+2018

Intermediate-mass black holes in dwarf galaxies out to redshift ~2.4 in the *Chandra* COSMOS-Legacy Survey

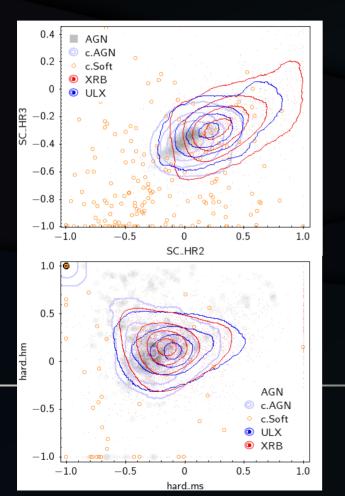
- Occupation fraction is capital to constrain SMBH formation scenarios
- Wandering black holes are seen in DG (Bellovary+2019, Reines+2020)
- Thanks to GLADE (its completeness):
 > 250 X-ray sources in nuclei
 - → > 350 offnuclear sources
- Further work is needed to validate these IMBH candidates

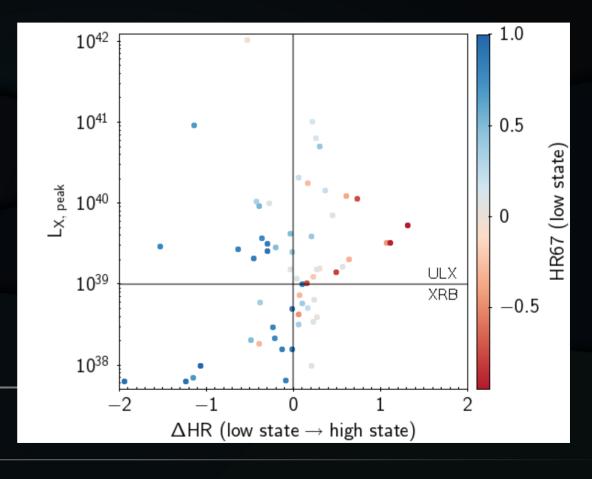
Take-home messages

- CLAXBOI is an efficient probabilistic source classification, easy to interpret and adapted to a **wide range of applications**
- It enabled to retrieve a clean sample of **3600 XRB and 1900 ULX**
- An excess of ULX in dwarf galaxies, and a large fraction of HLX, suggest the **presence of IMBH accretors**
- A lot remains to be done to understand ULX as a population, notably given the **high-luminosity break in the XLF**

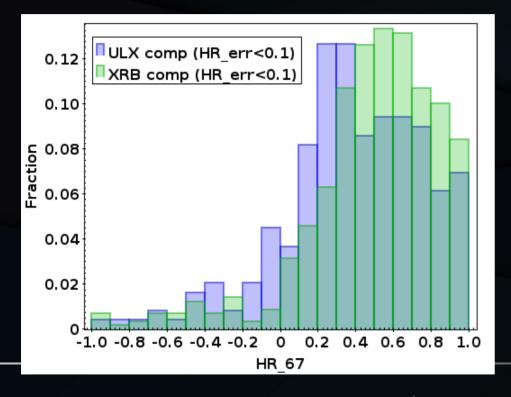
Outlook

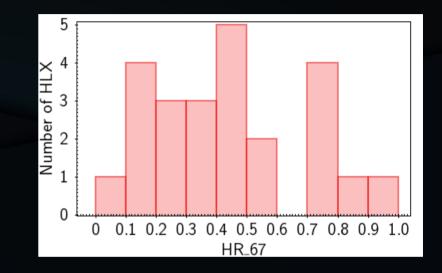
 Potential of CLAXBOI: population studies

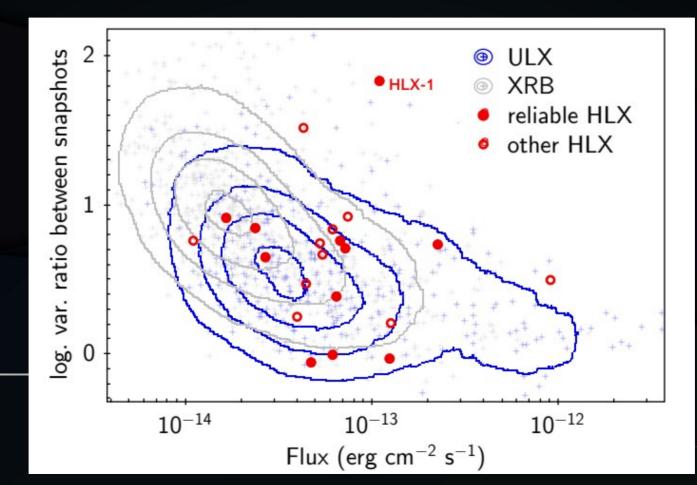

ULX & HLX (to be sub), AGN candidates in dwarf galaxies, Study AGN subpopulations...


• Search and study outliers in known populations

• Application to eROSITA sources


Backup slides


Hardness of ULX / XRB


Hardness of ULX / XRB / HLX

84 % probability of intrinsic bimodality

Variability of ULX / XRB / HLX

Results on the whole sample

Test sample

- >200 sources analyzed manually (Swift+XMM)
- >90% accuracy on the sources classified as AGN and stars
- About 40-60 % accuracy on ... as XRB 60 % accuracy on ... as CV

→ Challenge 1: false positives are often types
 under-represented in our training sample.
 → Challenge 2: small training sample for XRB and CV

AGN Star X-ray binaries Cataclysmic variables

 \Rightarrow ~250,000 new AGN candidates

Tranin et al. A&A 2022

Features

Name	Category
Galactic latitude	Location
Gaia proper motion	Location
Relative distance to the host center	Location
X-ray over optical (b,r) flux ratio	Counterparts
X-ray over infrared (W1,W2) flux ratio	Counterparts
X-ray max to min flux ratio	Variability
X-ray lower max to higher min flux ratio	Variability
X-ray hardness ratio HR1, HR2, HR3	Hardness
Power law index fitted to X-ray spectrum	Hardness
X-ray luminosity	Hardness

For 2SXPS :	Coefficient $\alpha_{location}$	8.8
	Coefficient $\alpha_{hardness}$	7.3
	Coefficient $\alpha_{\text{multiwavelength}}$	2.1
	Coefficient $\alpha_{\text{variability}}$	3.9