

Unveiling the disc structure in ultraluminous X-ray source NGC 1313 X-2

 $\bullet \bullet \bullet$

Alessandra Robba PhD student

Ciro Pinto, Dominic Walton, Roberto Soria, Fabio Pintore, Peter Kosec ...

Fero 10 - Finding Extreme Relativistic Objects

Toulouse, 30 March - 1 April, 2022

Accretion: the standard picture

increasing temperature

Ultraluminous X-ray sources

- X-ray luminosities that exceed the isotropic Eddington luminosity for a standard black hole (BH) of 10 M_{\odot}
- ULXs are among the brightest (10³⁹-10⁴¹ erg s⁻¹), off-nuclear, X-ray sources in the Universe
- At high mass accretion rates the radiation inflates the disc and launches winds

1) The X-ray spectral variability

- Strong curvature between 2–10 keV
- Often a **soft excess** below 2 keV
- ULXs classified by Sutton+13 as SUL, HUL and BD
- Sub-class of ULXs: **ultraluminous supersoft sources** (ULSs)

2) Powerful outflows

Takeuchi +13

Blueshifted absorption lines and emission lines at laboratory wavelength have been discovered

Pinto +16

Theory predicts powerful winds at super-Eddington accretion rates

3) Discovery of ULX Pulsars

Around 7 known NS-ULXs

From all ULXs with sufficient statistics ~25% NSs (Rodriguez-Castillo+20)

- NGC 7793 P13 (Israel+16,Fuerst+16)
 - NGC 5907 ULX (Israel+17)

۲

- NGC 300 ULX 1 (Carpano+18)
- NGC 1313 X-2 (Sathyaprakash+19)
- M51 ULX-7 (Rodriguez Castillo+20)
- NGC 7793 ULX-4 (Quintin+21)

M 82 X-2 (Bachetti+2014)

Open questions

- Changes in the wind or variations in the accretion rate / geometry responsible for the **spectral transitions** in ULXs?
- What is the **fraction** of matter lost into the wind and, therefore, the **net accretion rate** onto the compact object?
- What is the **fraction of BH-NS** powered ULXs?

ULXs which exhibit strong spectral variability are the ideal targets to tackle them

Sample studied

Study the structure of the accretion disc in super Eddington regime

Spectral variability and L/T trends unveil the presence of winds

NS-ULX

NGC 55 ULX-1/ NGC 247 ULX-1

Comparison between these two sources Dipping activity

NGC 55 ULX-2

Report the identification of a new ULX candidate (NGC 55 ULX-2)

BH-ULX?

Study of accretion disc structure: NGC 1313 X-2

Hardness Ratio (HR) = 1.2 - 10 keV / 0.3 - 10 keV

Robba et al. 2021, A&A, vol 652, pages A118

Study of accretion disc structure: NGC 1313 X-2

Robba et al. 2021, A&A, vol 652, pages A118

NGC 55 ULX-1

Barra et al. , *submitted to MNRAS*

NGC 247 ULX-1

Pinto +2021

Remarkable variability was observed in source flux with strong dipping activity during the brightest observations

Unambiguous evidence of a wind in the form of emission and absorption lines

NGC 55 ULX-2: spectral variability

no detection in obs 00280101 - 201 (November 2001)

Robba et al., submitted to MNRAS

NGC 55 ULX-2: spectral analysis

Robba et al., submitted to MNRAS

Summary

- NGC 1313 X-2 spectral evolution of the cool component agrees with the prediction of super-Eddington accretion
- NGC 55 ULX-1 deviations of the cool component trend imply an expansion of the disc or a contribution to the emission from the wind
- NGC 247 ULX-1 shows strong dipping activity during the brightest observations and evidence of wind
- NGC 55 ULX-2 identification of a new ULX candidate
- **Timing & Spectral evolution** of ULXs is a tool to understand the super-Eddington accretion mechanism

Summary

- NGC 1313 X-2 spectral evolution of the cool component agrees with the prediction of super-Eddington accretion
- NGC 55 ULX-1 deviations of the cool component trend imply an expansion of the disc or a contribution to the emission from the wind
- NGC 247 ULX-1 shows strong dipping activity during the brightest observations and evidence of wind
- NGC 55 ULX-2 identification of a new ULX candidate
- **Timing & Spectral evolution** of ULXs is a tool to understand the super-Eddington accretion mechanism

Thank you for your attention!

NGC 1313 X-2 - Temperature/Radius

NGC 1313 X-2: spectral variability

NGC 1313 X-2: example fit

Model component	Parameter	Unit	
TBABS	N_H	$[10^{22} \text{cm}^{-2}]$	0.218 ± 0.013
DISKBB	T _{in}	[keV]	0.31 ± 0.02
	norm		$0.046^{+0.009}_{-0.008}$
DISKBB	T_{in}	[keV]	$1.01 \begin{array}{c} +0.05 \\ -0.04 \end{array}$
	norm		4.3 + 1.8 - 1.2
CUTOFFPL	PhoIndex		0.59 (fixed)
	HighECut	[keV]	7.9 (fixed)
	norm		$0.00005^{+0.000002}_{-0.000003}$
χ^2 /dof			1.1311 (235)

Photoindex = 0.59 keV (fixed) HighECut = 7.9 keV (fixed)

> Brightman +16 Walton +18

Possible scenario for dips: ULX-ULS transitions

The source is observed at a viewing angle that is high enough that the inner disc is already partly obscured by the wind (soft ULXs) High accretion rate \rightarrow Increase of the scale-height of the disc and the optically-thick base of the wind \rightarrow near-total obscuration of the inner regions (ultraluminous supersoft source, ULS)

Luminosity / Temperature trends

