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Introduction

Mueller (2004)

I corona vs. hot inner accretion flow vs. (base of) jet

I Monte Carlo codes for radiative transfer inside hot
corona including relativistic effects & polarisation:
I Schnittman & Krolik (2010, 2013)→ PANDURATA
I Zhang, Dovčiak & Bursa (2019)→ MONK
I Krawczynski & Beheshtipour (2022)→ KerrC

I POP et al. → JED

I Swensson & Zdziarski (1994)

I Kubota & Done (2018)→ AGNSED

I Dovčiak, Papadakis, Kammoun & Zhang (2022)→
KYNSED



Power transferred to corona from accretion disc
Total power at infinity released by the NT accretion disc:
(Novikov & Thorne, 1973)

Ldisc = 2π

∫
∞

rISCO

σT 4
NT(r)[−Ut (r)] r dr

= ηṀc2, η = 1 + Ut (rISCO)

Power at infinity released by the NT accretion disc < rtransf:
(see e.g. eq. (3.171) in Kato, Fukue & Mineshige, 1998)

Ltransf = 2π

∫ rtransf

rISCO

σT 4
NT(r)[−Ut (r)] r dr

= [C−1/2G − r−1
trans B−1Q + Ut (rISCO)]Ṁc2

Power transferred to corona if 100% efficiency is assumed:
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Corona emission
The scattered photon flux – power law with cut-off:

fX,c(E)≡ dN
dtdΩdE

= Ac E−Γ exp(−E/Ecut,c), E > E0,c

The corona luminosity:

LX,c = 4π

∫
∞

E0,c

E fX,c(E)dE = Ltransf,c + (1−e−τ )∆Sc LBB,c

Number of scattered photons:

Nc = 4π

∫
∞

E0,c

fX,c(E)dE = (1−e−τ )∆Sc NBB,c

Size of corona:

∆Sc = U t
c πR2

c

LBB,c = 2σ

∫ rout

rtrans

T 4
d (r)

g4(r)f 4
col(r)

dΩc

dS
(r) r dr

NBB,c = 2σp

∫ rout

rtrans

T 3
d (r)

g3(r)f 4
col(r)

dΩc

dS
(r) r dr

E0,c =
LBB,c

NBB,c



Accretion disc – reflection and absorption
Incident flux:

Finc(r) =
g(r)

U t
c

dΩc

dS
(r)

LX,c

4π

Reflected flux, Frefl – given by XILLVER tables
(Garcia et al., 2013, 2016)

Absorbed (thermalised) flux:

Fabs(r) = Finc(r)−Frefl(r)

Disc temperature:

Td(r) = fcol(r)

[
Facc(r) + 2Fabs(r)

σ

]1/4

Facc(r) = 0, r < rtrans

Facc(r) = FNT(r), r > rtrans

Garcia et al. (2013)



Disc–corona interaction and iteration of computations
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I disc thermal emission entering the corona must be known

in order to compute total X-ray luminosity of the corona
I disc thermal emission depends on its illumination through

thermalisation of the absorbed part of the corona X–ray
emission

I iterative scheme:
I initially LX,c = Ltransf

(the incoming thermal flux is neglected)
I then Finc, Frefl, Fabs and new Td(r) are computed
I then LBB,c, NBB,c and E0,c are computed
I new LX,c is computed→ next iteration
I we stop iterations when both LX,c and

E0,c change by less than 1%
I resulting Td(r), E0,c and LX,c are used

to compute the final observed spectrum
(thermal component, primary X-ray flux
as well as reflection)

I all relativistic effects are included



KYNSED model parameters

I central black hole

I accretion disc

→ Keplerian, geometrically thin, optically
thick

→ colour correction
→ power extraction – inactive disc < rtrans
→ increase of temperature due to

illumination
→ local re-processing given by XILLVER

– variable Ecut version preferred

I compact corona
→ point source approximation
→ isotropic power-law with cut-offs



KYNSED model parameters

I Further output via xset command:

→ corona emission:
E0[keV]
LX,c and LX,obs[LEdd] in 2-10 keV

→ corona properties:
τ, ne[cm−3], Rc[rg]

→ reflection fraction Frefl/Fprim

→ radii in rg:
rh, risco, rtrans

→ ionisation parameter:
ξin, ξout



Dependence on power transferred to corona

M = 10M�,Ṁ = 0.01ṀEdd,h = 3 rg,Γ = 2,Ecut = 300keV,θo = 45◦,D = 10kpc
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dashed→ external source of energy
I non-rotating BH (left) has larger inactive region heated only by illumination (due to larger rtrans)
I additional heating due to illumination in case of highly spinning BH (right) increases disc temperature



Dependence on accretion rate

M = 10M�,h = 3 rg,Γ = 2,Ecut = 300keV,θo = 45◦,D = 10kpc
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I low accretion rates and high power transferred to corona (left)→ possible low/hard state
I high accretion rates and low power transferred to corona (right)→ possible high/soft state



Dependence on inclination

M = 10M�,Ṁ = 0.01ṀEdd,Ltransf/Ldisc = 0.5,h = 3 rg,Γ = 2,Ecut = 300keV,D = 10kpc
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dotted→ without reflection
I while the X-ray source is isotropic, the disc emission is a cosine source (left)
I due to light bending, close to BH even disc emission increases with inclination (right)



Dependence on height

M = 10M�,Ṁ = 0.01ṀEdd,Ltransf/Ldisc = 0.5,Γ = 2,Ecut = 300keV,θo = 45◦,D = 10kpc
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I higher corona illuminates and heats more distant area, lower corona illuminates and heats closer regions
I light bending decreases the X-ray emission for low heights of corona



Dependence on high energy cut-off

M = 10M�,Ṁ = 0.01ṀEdd,Ltransf/Ldisc = 0.5,h = 3 rg,Γ = 2,θo = 45◦,D = 10kpc
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I high energy cut-off changes the primary X-ray normalisation and reflection component



Comparison with 3D corona

M = 5×107M�,a = 1,Ṁ = 0.1ṀEdd,Γ = 2,θo = 40◦, fcol = 1
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We used MONK code by Zhang et al.
(2019):

I with different sizes of corona, Rc

I NT disc assumed down to ISCO
I τ used to produce approx. Γ = 2
I Te = 100keV
I we scale results to Rc = 1rg

For KYNSED we used:
I external power source, Lext, so

that the radius of corona is
Rc = 1rg

I Ecut = 250keV (POP et al., 2001)

Difference in normalisation equiva-
lent to 20% error in corona radius.



XILLVER and thermal radiation
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XILLVER tables:
I computed for AGN
I high density tables available
I no internal disc energy included
I thermal radiation contribution from

upper heated layers present
(soft excess in AGN)

I constant low energy cut-off at 0.1 keV



XILLVER and thermal radiation
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KYNSED:
I we have to exclude the thermal

contribution to add it to internal disc
energy→ low density tables should be
used

I in XRBs the seed photon energy may
be larger than 0.1 keV→ reflection
below seed photon energy, E0, is
removed

I we scale ionisation parameter and
reflection normalisation to disc density
in XRBs (ξ ≡ 4πL/n)

I regarding thermalisation there is an
option to set Fabs as a constant fraction
of Finc (independent of disc ionisation
or radius)



Internal disc energy

Rozanska et al. (2011)

I new reflection tables for XRBs
that include internal disc energy
should be computed, e.g. with
TITAN code

I better estimate of the thermal
component for illuminated discs

I different shape of reflection, see
Rozanska et al. (2011)
→ iron line may be in absorption
instead of emission, e.g. for high
spin and innermost regions

I on the other hand the innermost
regions are intrinsically cold
→ all released power is
transferred to corona,
thus this applies only above rtrans



Colour correction factor for illuminated discs

Ross et al. (1992) for AGN: fcol = 2.4

Shimura & Takahara (1995) for XRBs: fcol = 1.7

Done et al. (2012):

fcol = 1 for Td(r) < 3×104K

fcol =
[

Td(r)
3×104K

]0.82
for 3×104K < Td(r) < 105K

fcol =
[

72keV
kBTd(r)

]1/9
for Td(r) > 105K

→ but is this true also for illuminated discs?
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Other effects changing the Comptonised/thermal flux ratio

I Disc geometrical thickness
→ probably important for optical/UV thermal emission in AGN case

I Corona motion – beaming of X-ray emission of corona
→ lower X-ray illumination, reflection and absorption

I Energy extraction from below ISCO or from an external power source
(e.g. from spinning black hole – Blandford & Znajek 1977)



Summary

I new KYNSED model presented

I lamp-post model in point-source approximation with simplified Comptonisation treatment
(isotropic cut-off power-law)

I 100% efficiency assumed in transfer of power from disc to corona

I inactive disc from ISCO to transition radius

I thermalisation of the absorbed incident flux included

I reflection component included

I energy and photon number conservation

I all relativistic effects included

I paper: https://doi.org/10.1051/0004-6361/202142358, https://arxiv.org/abs/2110.01249

I model available at: https://projects.asu.cas.cz/dovciak/kynsed
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