## The innermost region of accreting stellar-mass black holes: corona/jet/ISCO New physical model with disc-corona interaction

#### **Michal Dovčiak**

Astronomical Institute Academy of Sciences of the Czech Republic, Prague

Finding Extreme Relativistic Objects 10<sup>th</sup> FERO workshop 30<sup>th</sup> March – 1<sup>st</sup> April 2022 IRAP, Obervatoire Midi-Pyrénnées, Toulouse, France

# Introduction



- corona vs. hot inner accretion flow vs. (base of) jet
- Monte Carlo codes for radiative transfer inside hot corona including relativistic effects & polarisation:
  - ▶ Schnittman & Krolik (2010, 2013)  $\rightarrow$  PANDURATA
  - ► Zhang, Dovčiak & Bursa (2019)  $\rightarrow$  MONK
  - ► Krawczynski & Beheshtipour (2022)  $\rightarrow$  KerrC
- ▶ POP et al.  $\rightarrow$  JED
- Swensson & Zdziarski (1994)
- Kubota & Done (2018)  $\rightarrow$  AGNSED
- ▶ Dovčiak, Papadakis, Kammoun & Zhang (2022)  $\rightarrow$  KYNSED

Mueller (2004)

### Power transferred to corona from accretion disc

Total power at infinity released by the NT accretion disc: (Novikov & Thorne, 1973)

$$L_{\text{disc}} = 2\pi \int_{r_{\text{ISCO}}}^{\infty} \sigma T_{\text{NT}}^4(r) [-U_t(r)] r dr$$
$$= \eta \dot{M} c^2, \quad \eta = 1 + U_t(r_{\text{ISCO}})$$

Power at infinity released by the NT accretion disc  $< r_{transf}$ : (see e.g. eq. (3.171) in Kato, Fukue & Mineshige, 1998)

$$L_{\text{transf}} = 2\pi \int_{r_{\text{ISCO}}}^{r_{\text{transf}}} \sigma T_{\text{NT}}^4(r) [-U_t(r)] r \, dr$$
$$= [\mathscr{C}^{-1/2} \mathscr{G} - r_{\text{trans}}^{-1} \mathscr{B}^{-1} \mathscr{Q} + U_t(r_{\text{ISCO}})] \dot{M} c^2$$

Power transferred to corona if 100% efficiency is assumed:

 $L_{\text{transf,c}} = \frac{1}{2} L_{\text{transf}} [U_c^t]^2$ 



## Corona emission

The scattered photon flux - power law with cut-off:

$$f_{X,c}(E) \equiv \frac{dN}{dtd\Omega dE} = A_c E^{-\Gamma} \exp(-E/E_{cut,c}), \quad E > E_{0,c}$$

The corona luminosity:

$$L_{\rm X,c} = 4\pi \int_{E_{0,c}}^{\infty} E f_{\rm X,c}(E) dE = L_{\rm transf,c} + (1 - e^{-\tau}) \Delta S_{\rm c} L_{\rm BB,c} \qquad L_{\rm BB,c} = 2\sigma \int_{r_{\rm trans}}^{r_{\rm out}} \frac{T_{\rm c}^4}{g^4(r)f_{\rm c}}$$

Number of scattered photons:

$$N_{\rm C} = 4\pi \int_{E_{0,\rm C}}^{\infty} f_{\rm X,c}(E) dE = (1 - e^{-\tau}) \Delta S_{\rm C} N_{\rm BB,c}$$

Size of corona:

$$\Delta S_{
m c} = U_{
m c}^t \pi R_{
m c}^2$$

$$L_{\rm BB,c} = 2\sigma \int_{r_{\rm trans}}^{r_{\rm out}} \frac{T_{\rm d}^4(r)}{g^4(r)f_{\rm col}^4(r)} \frac{\mathrm{d}\Omega_{\rm c}}{\mathrm{d}S}(r) r \mathrm{d}r$$

$$N_{\mathrm{BB,c}} = 2\sigma_{\mathrm{p}} \int_{r_{\mathrm{trans}}}^{r_{\mathrm{out}}} \frac{T_{\mathrm{d}}^{3}(r)}{g^{3}(r)f_{\mathrm{col}}^{4}(r)} \frac{\mathrm{d}\Omega_{\mathrm{c}}}{\mathrm{d}S}(r)r\mathrm{d}r$$

$$E_{0,c} = \frac{L_{BB,c}}{N_{BB,c}}$$

## Accretion disc - reflection and absorption

Incident flux:

$$F_{\rm inc}(r) = rac{g(r)}{U_{\rm c}^t} rac{{
m d}\Omega_{
m c}}{{
m d}S}(r) rac{L_{
m X,c}}{4\pi}$$

Reflected flux,  $F_{refl}$  – given by XILLVER tables (Garcia et al., 2013, 2016)

Absorbed (thermalised) flux:

$$F_{\rm abs}(r) = F_{\rm inc}(r) - F_{\rm refl}(r)$$

Disc temperature:

$$T_{d}(r) = f_{col}(r) \left[ \frac{F_{acc}(r) + 2F_{abs}(r)}{\sigma} \right]^{1/4}$$
  

$$F_{acc}(r) = 0, \quad r < r_{trans}$$
  

$$F_{acc}(r) = F_{NT}(r), \quad r > r_{trans}$$



# Disc-corona interaction and iteration of computations

- disc thermal emission entering the corona must be known in order to compute total X-ray luminosity of the corona
- disc thermal emission depends on its illumination through thermalisation of the absorbed part of the corona X-ray emission
- iterative scheme:
  - initially L<sub>X,c</sub> = L<sub>transf</sub> (the incoming thermal flux is neglected)
  - then  $F_{inc}$ ,  $F_{refl}$ ,  $F_{abs}$  and new  $T_d(r)$  are computed
  - ▶ then  $L_{BB,c}$ ,  $N_{BB,c}$  and  $E_{0,c}$  are computed
  - ▶ new  $L_{X,c}$  is computed → next iteration
  - we stop iterations when both L<sub>X,c</sub> and E<sub>0,c</sub> change by less than 1%
- resulting T<sub>d</sub>(r), E<sub>0,c</sub> and L<sub>X,c</sub> are used to compute the final observed spectrum (thermal component, primary X-ray flux as well as reflection)
- all relativistic effects are included



# KYNSED model parameters

### central black hole

### accretion disc

- → Keplerian, geometrically thin, optically thick
- $\rightarrow$  colour correction
- $\rightarrow$  power extraction inactive disc <  $r_{\text{trans}}$
- → increase of temperature due to illumination
- $\rightarrow$  local re-processing given by XILLVER – variable  $E_{cut}$  version preferred

#### compact corona

- $\rightarrow$  point source approximation
- $\rightarrow$  isotropic power-law with cut-offs

| Model | kynse | d<1> Source | No.: 1 Ad | ctive/Off |             |         |
|-------|-------|-------------|-----------|-----------|-------------|---------|
| Model | Model | Component   | Parameter | Unit      | Value       |         |
| par   | comp  |             |           |           |             |         |
| 1     | 1     | kynsed      | М         | M8        | 0.100000    | +/- 0.0 |
| 2     | 1     | kynsed      | spin      | GM/c      | 1.00000     | +/- 0.0 |
| 3     | 1     | kynsed      | incl      | deg       | 30.0000     | +/- 0.0 |
| 4     | 1     | kynsed      | arate     | Ledd      | 0.100000    | +/- 0.0 |
| 5     | 1     | kynsed      | f_col     |           | -1.00000    | frozen  |
| 6     | 1     | kynsed      | Ltransf   |           | 0.500000    | frozen  |
| 7     | 1     | kynsed      | rout      | GM/c^2    | 1.00000E+04 | +/- 0.0 |
| 8     | 1     | kynsed      | density   | 1e15/cm3  | 1.00000     | frozen  |
| 9     | 1     | kynsed      | tab       |           | 8           | frozen  |
| 10    | 1     | kynsed      | abun      | solar     | 1.00000     | frozen  |
| 11    | 1     | kynsed      | height    | GM/c^2    | 3.00000     | +/- 0.0 |
| 12    | 1     | kynsed      | PhoIndex  |           | 2.00000     | +/- 0.0 |
| 13    | 1     | kynsed      | E_cut     | keV       | 300.000     | +/- 0.0 |
| 14    | 1     | kynsed      | SW        |           | 0           | frozen  |
| 15    | 1     | kynsed      | zshift    |           | 0.0         | frozen  |
| 16    | 1     | kynsed      | nrad      |           | 80.0000     | frozen  |
| 17    | 1     | kynsed      | nphi      |           | 45.0000     | frozen  |
| 18    | 1     | kynsed      | nthreads  |           | 8.00000     | frozen  |
| 19    | 1     | kynsed      | norm      |           | 1.00000     | +/- 0.0 |

# KYNSED model parameters

- Further output via xset command:
  - $\rightarrow\,$  corona emission:

 $E_0$ [keV]

 $L_{X,c}$  and  $L_{X,obs}[L_{Edd}]$  in 2-10 keV

- ightarrow corona properties: au,  $n_{
  m e}[
  m cm^{-3}]$ ,  $R_{
  m c}[r_{
  m g}]$
- $\rightarrow$  reflection fraction  $F_{refl}/F_{prim}$
- $\rightarrow$  radii in  $r_{g}$ :

 $r_{\rm h}, r_{\rm isco}, r_{\rm trans}$ 

 $\rightarrow \,$  ionisation parameter:

 $\xi_{in}, \xi_{out}$ 

| Model | kynsed | d<1> Source | No.: 1 Ad | ctive/Off |             |         |
|-------|--------|-------------|-----------|-----------|-------------|---------|
| Model | Model  | Component   | Parameter | Unit      | Value       |         |
| par   | comp   |             |           |           |             |         |
| 1     | 1      | kynsed      | м         | M8        | 0.100000    | +/- 0.0 |
| 2     | 1      | kynsed      | spin      | GM/c      | 1.00000     | +/- 0.0 |
| 3     | 1      | kynsed      | incl      | deg       | 30.0000     | +/- 0.0 |
| 4     | 1      | kynsed      | arate     | Ledd      | 0.100000    | +/- 0.0 |
| 5     | 1      | kynsed      | f_col     |           | -1.00000    | frozen  |
| 6     | 1      | kynsed      | Ltransf   |           | 0.500000    | frozen  |
| 7     | 1      | kynsed      | rout      | GM/c^2    | 1.00000E+04 | +/- 0.0 |
| 8     | 1      | kynsed      | density   | 1e15/cm3  | 1.00000     | frozen  |
| 9     | 1      | kynsed      | tab       |           | 8           | frozen  |
| 10    | 1      | kynsed      | abun      | solar     | 1.00000     | frozen  |
| 11    | 1      | kynsed      | height    | GM/c^2    | 3.00000     | +/- 0.0 |
| 12    | 1      | kynsed      | PhoIndex  |           | 2.00000     | +/- 0.0 |
| 13    | 1      | kynsed      | E_cut     | keV       | 300.000     | +/- 0.0 |
| 14    | 1      | kynsed      | sw        |           | Θ           | frozen  |
| 15    | 1      | kynsed      | zshift    |           | 0.0         | frozen  |
| 16    | 1      | kynsed      | nrad      |           | 80.0000     | frozen  |
| 17    | 1      | kynsed      | nphi      |           | 45.0000     | frozen  |
| 18    | 1      | kynsed      | nthreads  |           | 8.00000     | frozen  |
| 19    | 1      | kynsed      | norm      |           | 1.00000     | +/- 0.0 |
|       |        |             |           |           |             |         |

### Dependence on power transferred to corona



 $M = 10M_{\odot}, \dot{M} = 0.01\dot{M}_{Edd}, h = 3r_{g}, \Gamma = 2, E_{cut} = 300 \,\text{keV}, \theta_{0} = 45^{\circ}, D = 10 \,\text{kpc}$ 

dashed  $\rightarrow$  external source of energy

- non-rotating BH (*left*) has larger inactive region heated only by illumination (due to larger r<sub>trans</sub>)
- additional heating due to illumination in case of highly spinning BH (right) increases disc temperature

### Dependence on accretion rate



$$M = 10 M_{\odot}, h = 3 r_{g}, \Gamma = 2, E_{cut} = 300 \text{ keV}, \theta_{o} = 45^{\circ}, D = 10 \text{ kpc}$$

 $\blacktriangleright$  low accretion rates and high power transferred to corona (left)  $\rightarrow$  possible low/hard state

▶ high accretion rates and low power transferred to corona (right) → possible high/soft state

## Dependence on inclination





dotted  $\rightarrow$  without reflection

while the X-ray source is isotropic, the disc emission is a cosine source (*left*)

due to light bending, close to BH even disc emission increases with inclination (right)

## Dependence on height



higher corona illuminates and heats more distant area, lower corona illuminates and heats closer regions

light bending decreases the X-ray emission for low heights of corona

## Dependence on high energy cut-off



 $M = 10 M_{\odot}, \dot{M} = 0.01 \dot{M}_{Edd}, L_{transf}/L_{disc} = 0.5, h = 3 r_{g}, \Gamma = 2, \theta_{o} = 45^{\circ}, D = 10 \text{ kpc}$ 

high energy cut-off changes the primary X-ray normalisation and reflection component

## Comparison with 3D corona



| height            | small            | medium            | large             |
|-------------------|------------------|-------------------|-------------------|
| 3 r <sub>g</sub>  | 0.5 <i>r</i> g   | 1.5 <i>r</i> g    | 2 <i>r</i> g      |
| $10r_{g}$         | 1 <i>r</i> g     | $6 r_{g}$         | 9 <i>r</i> g      |
| 30 r <sub>g</sub> | 5 r <sub>g</sub> | 15 r <sub>g</sub> | 29 r <sub>g</sub> |

We used MONK code by Zhang et al. (2019):

- with different sizes of corona, R<sub>c</sub>
- NT disc assumed down to ISCO
- $\tau$  used to produce approx.  $\Gamma = 2$
- *T*<sub>e</sub> = 100 keV
- we scale results to  $R_c = 1r_g$

For KYNSED we used:

 external power source, L<sub>ext</sub>, so that the radius of corona is R<sub>c</sub> = 1r<sub>g</sub>

E<sub>cut</sub> = 250 keV (POP et al., 2001)

Difference in normalisation equivalent to 20% error in corona radius.

# XILLVER and thermal radiation



XILLVER tables:

- computed for AGN
- high density tables available
- no internal disc energy included
- thermal radiation contribution from upper heated layers present (soft excess in AGN)
- constant low energy cut-off at 0.1 keV

Garcia (2016)

# XILLVER and thermal radiation



KYNSED:

- We have to exclude the thermal contribution to add it to internal disc energy → low density tables should be used
- ▶ in XRBs the seed photon energy may be larger than 0.1 keV  $\rightarrow$  reflection below seed photon energy,  $E_0$ , is removed
- we scale ionisation parameter and reflection normalisation to disc density in XRBs ( $\xi \equiv 4\pi L/n$ )
- regarding thermalisation there is an option to set F<sub>abs</sub> as a constant fraction of F<sub>inc</sub> (independent of disc ionisation or radius)

# Internal disc energy





- new reflection tables for XRBs that include internal disc energy should be computed, e.g. with TITAN code
- better estimate of the thermal component for illuminated discs
- different shape of reflection, see Rozanska et al. (2011)

 $\rightarrow$  iron line may be in absorption instead of emission, e.g. for high spin and innermost regions

 on the other hand the innermost regions are intrinsically cold
 → all released power is transferred to corona, thus this applies only above r<sub>trans</sub>

## Colour correction factor for illuminated discs

Ross et al. (1992) for AGN:  $f_{col} = 2.4$ Shimura & Takahara (1995) for XRBs:  $f_{col} = 1.7$ Done et al. (2012):

$$\begin{split} f_{\text{col}} &= 1 & \text{for} & T_{\text{d}}(r) < 3 \times 10^{4} \text{K} \\ f_{\text{col}} &= \left[\frac{T_{\text{d}}(r)}{3 \times 10^{4} \text{K}}\right]^{0.82} & \text{for} & 3 \times 10^{4} \text{K} < T_{\text{d}}(r) < 10^{5} \text{K} \\ f_{\text{col}} &= \left[\frac{72 \text{keV}}{\text{K}_{\text{B}} T_{\text{d}}(r)}\right]^{1/9} & \text{for} & T_{\text{d}}(r) > 10^{5} \text{K} \end{split}$$

ightarrow but is this true also for illuminated discs?



# Other effects changing the Comptonised/thermal flux ratio

- Disc geometrical thickness
  - $\rightarrow$  probably important for optical/UV thermal emission in AGN case
- Corona motion beaming of X-ray emission of corona
   → lower X-ray illumination, reflection and absorption
- Energy extraction from below ISCO or from an external power source (e.g. from spinning black hole – Blandford & Znajek 1977)

## Summary

- new KYNSED model presented
- lamp-post model in point-source approximation with simplified Comptonisation treatment (isotropic cut-off power-law)
- 100% efficiency assumed in transfer of power from disc to corona
- inactive disc from ISCO to transition radius
- thermalisation of the absorbed incident flux included
- reflection component included
- energy and photon number conservation
- all relativistic effects included
- paper: https://doi.org/10.1051/0004-6361/202142358, https://arxiv.org/abs/2110.01249
- model available at: https://projects.asu.cas.cz/dovciak/kynsed